Home
Class 12
MATHS
If A B C D E F is a regular hexagon, the...

If `A B C D E F` is a regular hexagon, them ` vec (A D)+ vec (E B)+ vec (F C)` equals

A

a) `2 vec (A B)`

B

b) ` vec0`

C

c) `3 vec (A B)`

D

d) `4 vec (A B)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the sum of the vectors \( \vec{AD} + \vec{EB} + \vec{FC} \) in a regular hexagon \( ABCDEF \). ### Step-by-Step Solution: 1. **Understand the Geometry of the Hexagon:** - A regular hexagon has equal sides and symmetrical properties. The vertices are labeled as \( A, B, C, D, E, F \). 2. **Identify the Vectors:** - The vectors we need to analyze are: - \( \vec{AD} \) (from point A to point D) - \( \vec{EB} \) (from point E to point B) - \( \vec{FC} \) (from point F to point C) 3. **Express Each Vector in Terms of Side Length:** - In a regular hexagon, the diagonal \( \vec{AD} \) can be expressed in terms of the side length \( s \): \[ \vec{AD} = 2 \vec{AB} \] - For \( \vec{EB} \): \[ \vec{EB} = 2 \vec{FA} \] - For \( \vec{FC} \): \[ \vec{FC} = 2 \vec{AB} \] 4. **Combine the Vectors:** - Now, we can substitute the expressions for \( \vec{AD} \), \( \vec{EB} \), and \( \vec{FC} \): \[ \vec{AD} + \vec{EB} + \vec{FC} = 2 \vec{AB} + 2 \vec{FA} + 2 \vec{AB} \] - Since \( \vec{FA} \) is equal to \( \vec{AB} \) (because they are both sides of the hexagon): \[ \vec{EB} = 2 \vec{AB} \] - Thus, we can rewrite: \[ \vec{AD} + \vec{EB} + \vec{FC} = 2 \vec{AB} + 2 \vec{AB} + 2 \vec{AB} = 4 \vec{AB} \] 5. **Final Result:** - Therefore, the final result is: \[ \vec{AD} + \vec{EB} + \vec{FC} = 4 \vec{AB} \]

To solve the problem, we need to find the sum of the vectors \( \vec{AD} + \vec{EB} + \vec{FC} \) in a regular hexagon \( ABCDEF \). ### Step-by-Step Solution: 1. **Understand the Geometry of the Hexagon:** - A regular hexagon has equal sides and symmetrical properties. The vertices are labeled as \( A, B, C, D, E, F \). 2. **Identify the Vectors:** ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • ALGEBRA OF MATRICES

    RD SHARMA|Exercise Solved Examples And Exercises|410 Videos
  • APPLICATION OF INTEGRALS

    RD SHARMA|Exercise Solved Examples And Exercises|118 Videos

Similar Questions

Explore conceptually related problems

If ABCDEF is a regular hexagon with vec AB=vec a and vec BC=vec b, then vec CE equals

[(vec a xxvec b) (vec a xxvec c)] * vec d equals

Knowledge Check

  • If ABCDEF is a regular hexagon , then A vec D + E vec B + F vec C equals

    A
    ` 2 A vec B `
    B
    `vec 0`
    C
    `3 A vec B `
    D
    `4 A vec B `
  • ABCDEF si a regular hexagon with centre at the origin such that A vec D + E vec B + F vec C = lambda E vec D . " Then, " lambda equals

    A
    2
    B
    4
    C
    6
    D
    3
  • If A, B, C, D be any four points and E and F be the middle points of AC and BD respectively, then A vec(B) + C vec(B) +C vec (D) + vec(AD) is equal to

    A
    `3 vec(EF)`
    B
    `4vec(EF)`
    C
    `4 vec(FE)`
    D
    `3 vec(FE)`
  • Similar Questions

    Explore conceptually related problems

    Let ABCDEF be a regular hexagon and vec AB=vec a,vec BC=vec b,vec CD=vec c then vec AE is

    In a regular hexagon ABCDEF,vec AB=a,vec BC=b and vec CD=c. Then ,vec AE=

    A B C D E is pentagon, prove that vec A B + vec B C + vec C D + vec D E+ vec E A = vec0 vec A B+ vec A E+ vec B C+ vec D C+ vec E D+ vec A C=3 vec A C

    Given vec A+ vec B+ vec + vec D=0 , can the magnitude of vec A + vec B + vec C be equal to the magnitude of vec D Explain.

    Figure shows a regular hexagon with side length unity and vec a,vec b and vec c as show vec c=lambdavec a+muvec b,(vec a xxvec b)xxvec c=xvec a+yvec b