Home
Class 12
MATHS
Find the volume of the parallelepiped ...

Find the volume of the parallelepiped whose coterminous edges are represented by the vector: ` vec a=2 hat i+3 hat j+4 hat k ,\ vec b= hat i+2 hat j- hat k ,\ vec c=3 hat i- hat j+2 hat k`

Text Solution

AI Generated Solution

To find the volume of the parallelepiped formed by the vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\), we will use the scalar triple product, which can be calculated using the determinant of a matrix formed by these vectors. ### Step 1: Write down the vectors The given vectors are: \[ \vec{a} = 2\hat{i} + 3\hat{j} + 4\hat{k} \] \[ ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SCALAR OR DOT PRODUCT

    RD SHARMA|Exercise Solved Examples And Exercises|232 Videos
  • SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS

    RD SHARMA|Exercise Solved Examples And Exercises|82 Videos

Similar Questions

Explore conceptually related problems

Find the volume of the parallelepiped whose coterminous edges are represented by the vectors: vec a=2 hat i+3 hat j+4 hat k , vec b= hat i+2 hat j- hat k , vec c=3 hat i- hat j+2 hat k vec a=2 hat i+3 hat j+4 hat k , vec b= hat i+2 hat j- hat k , vec c=3 hat i- hat j-2 hat k vec a=11 hat i , vec b=2 hat j- hat k , vec c=13 hat k vec a= hat i+ hat j+ hat k , vec b= hat i- hat j+ hat k , vec c= hat i+2 hat j- hat k

Find the volume of the parallelepiped whose coterminous edges are represented by the vector: vec a=2hat i-3hat j+4hat k,vec b=hat i+hat i+2hat j-hat k,vec c=3hat i-hat j-2hat k

Find the volume of the parallelepiped whose coterminous edges are represented by the vector: vec a=hat i+hat j+hat k,vec b=hat i-hat j+hat k,vec c=hat i+2hat j-hat k

Find the volume of the parallelepiped whose coterminous edges are represented by the vectors vec(a)=2hat(i)-3hat(j)+hat(k),vec(b)=hat(i)-hat(j)+2hat(k) and vec(c)=2hat(i)+hat(j)-hat(k) .

Find the volume of the parallelepiped whose coterminous edges are represented by the vectors (i) vec(a)=hat(i)+hat(j)+hat(k), vec(b)=hat(i)-hat(j)+hat(k), vec(c)=hat(i)+2hat(j)-hat(k) (ii) vec(a)=-3hat(i)+7hat(j)+5hat(k), vec(b)=-5hat(i)+7hat(j)-3hat(k), vec(c)= 7 hat(i)-5hat(j)-3hat(k) (iii) vec(a)=hat(i)-2hat(j)+3hat(k), vec(b)=2hat(i)+hat(j)-hat(k), vec(c)=hat(j)+hat(k) (iv) vec(a)=6hat(i), vec(b)=2hat(j), vec(c)=5hat(i)

[vec a,vec b,vec c], when vec a=2hat i-3hat j+4hat k,vec b=hat i+2hat j-hat k and vec c=3hat i-hat j+2hat k

Find the volume of the parallelepiped whose edges are represented by the vectors vec(a)=(2hat(i)-3hat(j)+4hat(k)), vec(b)=(hat(i)+2hat(j)-hat(k)) and vec(c)=(3hat(i)-hat(j)+2hat(k)) .

Find vec a.( vec bxx vec c)\ if\ vec a=2 hat i+ hat j+3 hat k ,\ vec b=- hat i+2 hat j+ hat k\ a n d\ vec c=3 hat i+ hat j+2 hat kdot

Find the angel between the vectors vec a=hat i-hat j+hat k and vec b=hat i+hat j-hat k

Find the area of the rriangle formed by the tips of the vectors, vec a= (2 hat I - hat j+ 3 hat k), vec b= 4 hat I + 3 hat j-hat k , vec C= 3 hat I - hat j + 2 hat k .