Home
Class 12
PHYSICS
Electromagnetic waves - (A) Can show in...

Electromagnetic waves -

(A) Can show interference
(B) Can be polarised
(C) Are deflected by electric field
(D) Are deflected by magnetic field

A

can show interference

B

can be polarised

C

are deflected by electric field

D

are deflected by magnetic field

Text Solution

Verified by Experts

The correct Answer is:
A, B
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • ELECTROMAGNETIC WAVES

    CHHAYA PUBLICATION|Exercise ENTRANCE CORNER (COMPREHENSION )|7 Videos
  • ELECTROMAGNETIC WAVES

    CHHAYA PUBLICATION|Exercise ENTRANCE CORNER (Interger )|5 Videos
  • ELECTROMAGNETIC WAVES

    CHHAYA PUBLICATION|Exercise ENTRANCE CORNER (ASSERTION - REASON )|5 Videos
  • ELECTROMAGNETIC INDUCTION & ALTERNATING CURRENT

    CHHAYA PUBLICATION|Exercise CBSE SCANNER|28 Videos
  • ELECTROMAGNETISM

    CHHAYA PUBLICATION|Exercise CBSE SCANNER|26 Videos

Similar Questions

Explore conceptually related problems

Which wave can not be polarised—

Electric field or magnetic field can independently exist In nature, but in electromagnetic waves, neither electric field or magnetic field can exist independently. Why?

Knowledge Check

  • SI units of electric field and magnetic field are :

    A
    `NC^(-1)` & tesla
    B
    `NA^(-1)` & gauss
    C
    `NCm^(-1)` & orested
    D
    `NA^(-1)` & orested
  • Statement I : The electromagnetic waves of all wavelengths can be polarised. Statement II: Polarisation is independent of the wavelength of electromagnetic waves.

    A
    Statement I is true, Statement II is true, statement II is a correct explanation for statement I.
    B
    Statement I is true, statement II is true, statement II is not a correct explanation for statement I.
    C
    Statement I is true, statement II is false.
    D
    Statement I is false, statement II is true.
  • Out of the following options which one can be used to produce a propagating electromagnetic wave? (A) A stationary charge. (B) A chargeless particle (C) An accelerating charges. (D) A charge moving at constant velocity.

    A
    a stationary charge
    B
    a chargeless particle
    C
    an accelerating charges
    D
    a charge moving at constant velocity
  • Similar Questions

    Explore conceptually related problems

    How are electromagnetic waves produced? What is the source of energy of these waves? Write mathematical expressions for electric and magnetic fields on an electromagnetic wave propagating along the z-axis. Write any two important properties of electromagnetic waves.

    which of the following moving particles do not get deflected in magnetic field?

    Electromagnetic waves propagate through free space or a medium as transverse waves. The electric and magnetic fields are perpendicular to each other as well as perpendicular to the direction of propagation of waves at each point. In the direction of wave propagation, electric field vecE and magnetic field vecB form a right-handed cartesian coordinate system. During the propagation of electromagnetic wave, total energy of electromagnetic wave is distributed equally between electric and magnetic fields. Since in_0 and mu_0 are permittivity and permeability of free space, the velocity of electromagnetic wave, c=(in_0 mu_0)^(-1//2) . Energy density i.e., energy in unit volume due to electric field at any point, u_E=1/2in_0E^2 Similarly, energy density due to magnetic field , u_M=1/(2mu_0)B^2 . If the electromagnetic wave propagates along x-direction, then the equations of electric and magnetic field are respectively. E=E_0sin(omegat-kx) and B=B_0sin(omegat-kx) Here, the frequency and the wavelength of oscillating electric and magnetic fields are f=omega/(2pi) and lambda=(2pi)/k respectively. Thus E_"rms"=E_0/sqrt2 and B_"rms"=B_0/sqrt2 , where E_0/B_0=c . Therefore, average energy density baru_E=1/2in_0E_"rms"^2 and baru_M=1/(2mu_0)B_"rms"^2 . The intensity of the electromagnetic wave at a point, I=cbaru=c(baru_E+baru_B) . To answer the following questions , we assume that in case of propagation of electromagnetic wave through free space, c=3xx10^8 m.s^(-1) and mu_0=4pixx10^(-7) H.m^(-1) If the peak value of electric field at a point in electromagnetic wave is 15 V . m^(-1) , then average electrical energy density (in j . m^(-3) )

    Electromagnetic waves propagate through free space or a medium as transverse waves. The electric and magnetic fields are perpendicular to each other as well as perpendicular to the direction of propagation of waves at each point. In the direction of wave propagation, electric field vecE and magnetic field vecB form a right-handed cartesian coordinate system. During the propagation of electromagnetic wave, total energy of electromagnetic wave is distributed equally between electric and magnetic fields. Since in_0 and mu_0 are permittivity and permeability of free space, the velocity of electromagnetic wave, c=(in_0 mu_0)^(-1//2) . Energy density i.e., energy in unit volume due to electric field at any point, u_E=1/2in_0E^2 Similarly, energy density due to magnetic field , u_M=1/(2mu_0)B^2 . If the electromagnetic wave propagates along x-direction, then the equations of electric and magnetic field are respectively. E=E_0sin(omegat-kx) and B=B_0sin(omegat-kx) Here, the frequency and the wavelength of oscillating electric and magnetic fields are f=omega/(2pi) and lambda=(2pi)/k respectively. Thus E_"rms"=E_0/sqrt2 and B_"rms"=B_0/sqrt2 , where E_0/B_0=c . Therefore, average energy density baru_E=1/2in_0E_"rms"^2 and baru_M=1/(2mu_0)B_"rms"^2 . The intensity of the electromagnetic wave at a point, I=cbaru=c(baru_E+baru_B) . To answer the following questions , we assume that in case of propagation of electromagnetic wave through free space, c=3xx10^8 m.s^(-1) and mu_0=4pixx10^(-7) H.m^(-1) If the electromagnetic wave propagates along x-axis, then the electric field vecE will be

    Electromagnetic waves propagate through free space or a medium as transverse waves. The electric and magnetic fields are perpendicular to each other as well as perpendicular to the direction of propagation of waves at each point. In the direction of wave propagation, electric field vecE and magnetic field vecB form a right-handed cartesian coordinate system. During the propagation of electromagnetic wave, total energy of electromagnetic wave is distributed equally between electric and magnetic fields. Since in_0 and mu_0 are permittivity and permeability of free space, the velocity of electromagnetic wave, c=(in_0 mu_0)^(-1//2) . Energy density i.e., energy in unit volume due to electric field at any point, u_E=1/2in_0E^2 Similarly, energy density due to magnetic field , u_M=1/(2mu_0)B^2 . If the electromagnetic wave propagates along x-direction, then the equations of electric and magnetic field are respectively. E=E_0sin(omegat-kx) and B=B_0sin(omegat-kx) Here, the frequency and the wavelength of oscillating electric and magnetic fields are f=omega/(2pi) and lambda=(2pi)/k respectively. Thus E_"rms"=E_0/sqrt2 and B_"rms"=B_0/sqrt2 , where E_0/B_0=c . Therefore, average energy density baru_E=1/2in_0E_"rms"^2 and baru_M=1/(2mu_0)B_"rms"^2 . The intensity of the electromagnetic wave at a point, I=cbaru=c(baru_E+baru_B) . To answer the following questions , we assume that in case of propagation of electromagnetic wave through free space, c=3xx10^8 m.s^(-1) and mu_0=4pixx10^(-7) H.m^(-1) The peak value of magnetic field (in Wb . m^(-2) ) at that point