`i^(-1)` =

A

`(1)/(i)`

B

`i`

C

`-i`

D

`(i)/(i^(2))`

Text Solution

Verified by Experts

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COMPLEX NUMBERS

    SURA PUBLICATION|Exercise ADDITIONAL QUESTIONS (2 MARKS)|10 Videos
  • COMPLEX NUMBERS

    SURA PUBLICATION|Exercise ADDITIONAL QUESTIONS (3 MARKS)|10 Videos
  • COMPLEX NUMBERS

    SURA PUBLICATION|Exercise ADDITIONAL QUESTIONS (III. CHOOSE THE INCORRECT THE STATEMENTS)|5 Videos
  • APPLICATIONS OF VECTORA ALGEBRA

    SURA PUBLICATION|Exercise ADDITIONAL QUESTIONS ( 5 MARKS )|5 Videos
  • DIFFERENTIALS AND PARTIAL DERIVATIVES

    SURA PUBLICATION|Exercise 5 MARKS|4 Videos

Similar Questions

Explore conceptually related problems

If n_1, n_2 are positive integers, then (1 + i)^(n_1) + ( 1 + i^3)^(n_1) + (1 + i_5)^(n_2) + (1 + i^7)^(n_2) is real if and only if :

The number of real solution of the equation sin^(-1) (sum_(i=1)^(oo) x^(i +1) -x sum_(i=1)^(oo) ((x)/(2))^(i)) = (pi)/(2) - cos^(-1) (sum_(i=1)^(oo) (-(x)/(2))^(i) - sum_(i=1)^(oo) (-x)^(i)) lying in the interval (-(1)/(2), (1)/(2)) is ______. (Here, the inverse trigonometric function sin^(-1) x and cos^(-1) x assume values in [-(pi)/(2), (pi)/(2)] and [0, pi] respectively)

Knowledge Check

  • The value of sum_(k=0)^(n)(i^(k)+i^(k+1)) , where i^(2)= -1 , is equal to

    A
    `i- i^(n)`
    B
    `-i+ i^(n+1)`
    C
    `i- i^(n+1)`
    D
    `i- i^(n+2)`
  • Similar Questions

    Explore conceptually related problems

    If A^(3)=O , then prove that (I-A)^(-1) =I+A+A^(2) .

    The value of (1 + i)^(4) + (1 -i)^(4) is

    The sum of i-2-3i+4 up to 100 terms, where i=sqrt(-1) is a. 50(1-i) b. 25 i c. 25(1+i) d. 100(1-i)

    Simplify the following: i^(59) + (1)/(i^(59))

    Given z=f(x)+ig(x)w h e r ef,g:(0,1)to(0,1) are real valued functions. Then which of the following does not hold good? z=1/(1-i x)+i1/(1+i x) b. z=1/(1+i x)+i1/(1-i x) c. z=1/(1+i x)+i1/(1+i x) d. z=1/(1-i x)+i1/(1-i x)

    If z(1+a)=b+i ca n da^2+b^2+c^2=1, then [(1+i z)//(1-i z)= A. (a+i b)/(1+c) B. (b-i c)/(1+a) C. (a+i c)/(1+b) D. none of these

    Simplify : i^(59)+1/i^(59) .