Home
Class 12
MATHS
For the inverse sine function...

For the inverse sine function

A

`sin^(-1)x` is an odd function

B

`sin^(-1)x` is an even function

C

`sin^(-1)(sinx)=pi-x" if "(pi)/(2)lexle3(pi)/(2)`

D

It passes through the origin

Text Solution

Verified by Experts

The correct Answer is:
A, C
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    SURA PUBLICATION|Exercise ADDITIONAL QUESTIONS (IV. Choose the odd man out : )|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    SURA PUBLICATION|Exercise ADDITIONAL QUESTIONS ( 2 MARKS)|10 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    SURA PUBLICATION|Exercise ADDITIONAL QUESTIONS (II. Fill in the blanks :)|10 Videos
  • DISCRETE MATHEMATICS

    SURA PUBLICATION|Exercise 5 MARKS|2 Videos
  • MODAL QUESTION PAPER

    SURA PUBLICATION|Exercise PART - IV|26 Videos

Similar Questions

Explore conceptually related problems

Find the inverse of the function f: [-1,1] to [-1,1],f(x) =x^(2) xx sgn (x).

Find the inverse of the function: f(x)={x^3-1, ,x<2 x^2+3,xgeq2

Knowledge Check

  • For the inverse tangent function

    A
    It passes through the origin
    B
    `y=tan^(-1)x` is an odd function
    C
    It is symmetric w.r.t. origin
    D
    The inverse tangent function is incresing
  • For the inverse tangent function

    A
    `tan^(-1)(sqrt(3))=rArrtan=sqrt(3)`
    B
    `y=(pi)/(3)in((-pi)/(2),(pi)/(2))`
    C
    `tan^(-1)sqrt(3)=(pi)/(3)`
    D
    `y=(pi)/(2)in((-pi)/(2),(pi)/(2))`
  • Similar Questions

    Explore conceptually related problems

    Find the inverse of the function: f:[-1,1]rarr[-1,1] defined by f(x)=x|x|

    Find the inverse of the function: f: R rarr (-oo,1)gi v e nb yf(x)=1-2^(-x)

    Find the inverse of the function: f:(-oo,1] rarr [1/2,oo],w h e r ef(x)=2^(x(x-2))

    If x in[-1,(-1)/(sqrt(2))] , then the inverse of the function f(x)=sin^(-1)(2x sqrt(1-x^(2))) is given by

    Show that f: [-1, 1] to R, given by f (x) = (x)/((x +2)) is one-one. Find the inverse of the function f : [-1, 1] to Rangle f.

    Let f:R to R be defined by f(x) =e^(x)-e^(-x). Prove that f(x) is invertible. Also find the inverse function.