Home
Class 12
MATHS
If a ** b =a^(2)b^(2)-ab then 3 ** (1 **...

If `a ** b =a^(2)b^(2)-ab` then `3 ** (1 **1)` ________

A

0

B

1

C

2

D

4

Text Solution

Verified by Experts

The correct Answer is:
A
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DISCRETE MATHEMATICS

    SURA PUBLICATION|Exercise CHOOSE THE INCORRECT STATEMENT:|5 Videos
  • DISCRETE MATHEMATICS

    SURA PUBLICATION|Exercise MATCH THE FOLLOWING|4 Videos
  • DISCRETE MATHEMATICS

    SURA PUBLICATION|Exercise ADDITIONAL QUESTIONS|10 Videos
  • DIFFERENTIALS AND PARTIAL DERIVATIVES

    SURA PUBLICATION|Exercise 5 MARKS|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    SURA PUBLICATION|Exercise ADDITIONAL QUESTIONS ( 5 MARKS)|6 Videos

Similar Questions

Explore conceptually related problems

If * defined as a * b =a^(2)+b^(2)-ab then 3 * (4 * 2) is

Using the identity (a + b)(a - b) = a^(2) - b^(2) , find the following product. (1 + 3b)(3b -1)

Knowledge Check

  • If ** is defined by a ** b =a^(2) + b^(2) + ab +1 , then (2 ** 3) ** 2 is

    A
    20
    B
    40
    C
    400
    D
    445
  • If adj A = [(2,3),(4,-1)] and adj B = [(1,-2),(-3,1)] then adj (AB) is

    A
    `[(-7,-1),(7,-9)]`
    B
    `[(-6,5),(-2,-10)]`
    C
    `[(-7,7,),(-1,-9)]`
    D
    `[(-6,-2),(5,-10)]`
  • If adj A = [(2,3),(4,-1)] and adj B = [(1,-2),(-3,1)] then adj (AB) is

    A
    `[(-7,-1),(7,-9)]`
    B
    `[(-6,5),(-2,-10)]`
    C
    `[(-7,7),(-1,-9)]`
    D
    `[(-6,-2),(5,-10)]`
  • Similar Questions

    Explore conceptually related problems

    If a^(2) + b^(2) = 7 ab, show that log ((a + b)/(3)) = (1)/(2) (log a + log b ).

    Let a,binRandabne1."If "6a^(2)+20a+15=0and15b^(2)+20b+6=0 then the value of (4030b^(3))/(ab^(2)-9(ab+1)^(3)) is _____.

    Factorise a ^(3) - 3a^(2) b + 3ab ^(2) -b ^(3)

    By using properties of determinants , show that : {:[( 1+a^(2) -b^(2) ,2ab , -2b),( 2ab, 1-a^(2) +b^(2) , 2a),( 2b, -2a, 1-a^(2) -b^(2)) ]:}=( 1+a^(2) +b^(2)) ^(3)

    Without expanding the determinant, prove that {:[( a, a ^(2), bc ),( b ,b ^(2) , ca),( c, c ^(2) , ab ) ]:} ={:[( 1, a^(2) , a^(3) ),( 1,b^(2) , b^(3) ),( 1, c^(2),c^(3)) ]:}