Home
Class 11
MATHS
Evaluate (1+i)^(6) + (1-i)^(3)...

Evaluate `(1+i)^(6) + (1-i)^(3)`

Text Solution

Verified by Experts

The correct Answer is:
`-2-10i`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    SUBHASH PUBLICATION|Exercise THREE MARKS QUESTIONS WITH ANSWERS|38 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    SUBHASH PUBLICATION|Exercise THREE MARKS QUESTIONS WITH ANSWERS|38 Videos
  • CIRCLES

    SUBHASH PUBLICATION|Exercise EXERCISE (2/3 MARKS QUESTIONS WITH ANSWERS)|13 Videos
  • I PUC ANNUAL EXAMINATION QUESTION PAPER -2019 ( SOUTH )-10

    SUBHASH PUBLICATION|Exercise Part-E|4 Videos

Similar Questions

Explore conceptually related problems

Evaluate [i^(18) + (1/i)^(25)]^(3)

Evaluate (i) ┌1 (ii) ┌2

Knowledge Check

  • (1+i)^(6)+(1-i)^(6)=

    A
    0
    B
    `2^(7)`
    C
    `2^(6)`
    D
    `2^(5)`
  • If n is an odd integer, then (1+i)^(6 n)+(1-i)^(6 n) is equal to

    A
    0
    B
    2
    C
    -2
    D
    -1
  • One of the value of (cos (pi)/(6)+i sin (pi)/(6))^(1 / 2)+(cos (pi)/(6)-i sin (pi)/(6))^(1 / 2) is

    A
    1
    B
    0
    C
    -1
    D
    none of these
  • Similar Questions

    Explore conceptually related problems

    Evaluate. (i) i^(1998) (ii) i^(-9999) (iii) (-sqrt-1)^(4n+3) ,n ne N

    Evaluate: i^24+(1/i)^26 .

    Find the modulus of (1+i)/(1-i) - (1-i)/(1+i)

    If A^(n) = 0 , then evaluate (i) I+A+A^(2)+A^(3)+…+A^(n-1) (ii) I-A + A^(2) - A^(3) +... + (-1) ^(n-1) for odd 'n' where I is the identity matrix having the same order of A.

    If ((1+i)/(1-i))^(3)-((1-i)/(1+i))^(3)=x+i y then (x, y)=