Home
Class 12
MATHS
Prove that int(a)^(b) f(x)dx= int(a)^(b)...

Prove that `int_(a)^(b) f(x)dx= int_(a)^(b) f (a+b-x)dx" hence evaluate " int_(0)^(pi/4) log(1+tan x)dx`.

Promotional Banner

Topper's Solved these Questions

  • SUPER MODEL QUESTION PAPER FOR PRACTICE

    SUBHASH PUBLICATION|Exercise PART - D|11 Videos
  • RELATIONS AND FUNCTIONS

    SUBHASH PUBLICATION|Exercise TRY YOURSELF - EXERCISE (Five marks questions)|1 Videos
  • SUPER MODEL QUESTIONS PAPER (WITH ANSWERS)

    SUBHASH PUBLICATION|Exercise PART-E|1 Videos

Similar Questions

Explore conceptually related problems

Prove that int_(0)^(a)(x)dx = int_(0)^(a) f(a-x)dx and hence evaluate int_(0)^(pi/4)log (1 + tan x)dx .

Evaulate int_(0)^(pi//4)log(1+tanx)dx .

int_0^(pi//2) log(tan x)dx =

int_(0)^(pi) log(1 + cos x)dx .

Prove that int_(0 )^(a) f (x) dx = int_(0)^(a) f (a -x) dx hence evaluate int_(0)^(pi/2) ( cos^5 x)/( cos^2 x+ sinn ^5 x) dx

a) Prove that int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx" and evaluate "int_(pi//6)^(pi//3)(dx)/(1+sqrt(tanx)) b) Prove that |{:(1+a^(2)-b^(2), 2ab, -2b), (2ab, 1-a^(2)+b^(2), 2a), (2, -2a, 1-a^(2)-b^(2)):}|=(1+a^(2)+b^(2))^(3)

Prove that int_(0)^(a)f(x)dx=int_(0)^(a)f(a-x)dx and hence evaluate int_(0)^(pi//2)(2log sin x-log sin2x)dx .

int_(0)^(pi//2) log sin x dx =

Prove that int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx and hence evaluate int_((pi)/(6))^((pi)/(3))(1)/(1+sqrt(tanx))dx.

int_0^(pi//2) log(tan x) dx is :