Using the standerd half-cell potential listed, calculate the equilibrium constant for the reaction : `Co(s)+2H^(+)(aq)toCo^(2+)(aq)+H_(2)(g)" at 298 K"` `Co^(2+)(aq)+2e^(-)toCo(s) E^(@)=-0.277 V`
A
`2.3xx10^(9)`
B
`4.8xx10^(4)`
C
`4.8xx10^(7)`
D
`4.8xx10^(11)`
Text Solution
AI Generated Solution
The correct Answer is:
To calculate the equilibrium constant (K) for the reaction:
\[ \text{Co(s)} + 2\text{H}^+(aq) \rightarrow \text{Co}^{2+}(aq) + \text{H}_2(g) \]
we will use the standard half-cell potentials provided and the Nernst equation.
### Step 1: Identify the half-reactions and their standard potentials
From the problem, we have the half-reaction for cobalt:
\[ \text{Co}^{2+}(aq) + 2e^- \rightarrow \text{Co(s)} \quad E^\circ = -0.277 \, \text{V} \]
The reduction half-reaction for hydrogen ions is:
\[ 2\text{H}^+(aq) + 2e^- \rightarrow \text{H}_2(g) \quad E^\circ = 0.00 \, \text{V} \]
### Step 2: Determine the overall cell reaction and the standard cell potential
The overall cell reaction can be written as:
\[ \text{Co(s)} + 2\text{H}^+(aq) \rightarrow \text{Co}^{2+}(aq) + \text{H}_2(g) \]
To find the standard cell potential (\(E^\circ_{cell}\)), we need to consider the oxidation and reduction potentials:
- Oxidation: \(\text{Co(s)} \rightarrow \text{Co}^{2+}(aq) + 2e^-\) (reverse of the given half-reaction)
- Reduction: \(2\text{H}^+(aq) + 2e^- \rightarrow \text{H}_2(g)\)
The standard cell potential is calculated as follows:
\[
E^\circ_{cell} = E^\circ_{reduction} - E^\circ_{oxidation}
\]
Substituting the values:
\[
E^\circ_{cell} = 0.00 \, \text{V} - (-0.277 \, \text{V}) = 0.277 \, \text{V}
\]
### Step 3: Use the Nernst equation to find the equilibrium constant
The Nernst equation at equilibrium states that:
\[
E^\circ_{cell} = \frac{0.0591}{n} \log K
\]
where \(n\) is the number of moles of electrons transferred in the balanced equation. Here, \(n = 2\).
Rearranging the equation to find \(K\):
\[
K = 10^{\frac{n \cdot E^\circ_{cell}}{0.0591}}
\]
Substituting the values:
\[
K = 10^{\frac{2 \cdot 0.277}{0.0591}}
\]
Calculating the exponent:
\[
\frac{2 \cdot 0.277}{0.0591} \approx 9.37
\]
Thus,
\[
K = 10^{9.37} \approx 2.3 \times 10^9
\]
### Final Answer
The equilibrium constant \(K\) for the reaction at 298 K is approximately:
\[
K \approx 2.3 \times 10^9
\]
Topper's Solved these Questions
ELECTROCHEMISTRY
NARENDRA AWASTHI|Exercise Level 1 (Q.1 To Q.30)|1 Videos
ELECTROCHEMISTRY
NARENDRA AWASTHI|Exercise Level 1 (Q.91 To Q.120)|1 Videos
DILUTE SOLUTION
NARENDRA AWASTHI|Exercise Level 3 - Match The Column|1 Videos
The equilibrium constant of the reaction : Zn(s)+2Ag^(+)(aq)toZn(aq)+2Ag(s),E^(@)=1.50V at 298 K is
Calculate the equilibrium constant of the reaction : Cu(s)+2Ag(aq) hArrCu^(2+)(aq) +2Ag(s) E^(c-)._(cell)=0.46V
Calculate the equilibrium constant for the reaction at 298 K Zn(s)+Cu^(2+)(aq)harr Zn^(2+)(aq)+Cu(s) Given " " E_(Zn^(2+)//Zn)^(@)=-0.76 V and E_(Cu^(2+)//Cu)^(@)=+0.34 V
Calculate the equilibrium constant for the reaction at 298K. Zn(s) +Cu^(2+)(aq) hArr Zn^(2+)(aq) +Cu(s) Given, E_(Zn^(2+)//Zn)^(@) =- 0.76V and E_(Cu^(2+)//Cu)^(@) = +0.34 V
The equilibrium constent of the reaction. Cu(s)+2Ag(aq). Leftrightarrow Cu^(2+) (aq.)+2Ag(s) E^(@)=0.46" V at 298 K is"
What is the equilibrium constant expression for the following reaction ? AI(s) +3H^(+) (aq) hArr AI^(3+) (aq) +3//2 H_(2)(g)