Home
Class 12
MATHS
The difference between the maximum and m...

The difference between the maximum and minimum value of the function `f(x)=3sin^4x-cos^6x` is :

Text Solution

Verified by Experts

`f(x) = 3sin^4x-cos^6x`
`= 3sin^4x-(1-sin^2x)^3`
`= 3sin^4x-(1-sin^6x-3sin^2x(1-sin^2x))`
`= 3sin^4x-(1-sin^6x-3sin^2x+3sin^4x)`
`=sin^ 6x + 3sin^2x -1`
`:. f(x) = sin^2x(sin^4x+3) - 1`
Now, `f(x)` will be maximum, when `sinx = 1` and will be minimum when `sin x = 0`.
`:. f(x)_max = 1(1+3)-1 = 3`
...
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

The difference between the maximum and minimum values of the function f(x)=sin^(3)x-3sinx, AA x in [0,(pi)/(6)] is

The difference between the maximum and minimum values of the function f(x)=x^(3)-3x+4, AA x in {0, 1] is

Knowledge Check

  • The difference between the maximum and minimum values of the function f(x)=sin^(3)x-3sinx, AA x in [0,(pi)/(6)] is

    A
    2
    B
    `(1)/(2)`
    C
    `(11)/(8)`
    D
    `(7)/(6)`
  • The maximum and minimum values of the function |sin 4x+3| are

    A
    1,2
    B
    4,2
    C
    2,4
    D
    `-1,1`
  • The minimum value of the function f(x)= sin x + cos x is-

    A
    `- sqrt(2)`
    B
    `-2 sqrt(2)`
    C
    -1
    D
    `sqrt(2)`
  • Similar Questions

    Explore conceptually related problems

    The difference between the maximum and minimum values of the function f(x)=x^(3)-3x+4, AA x in {0, 1] is

    Find the maximum and minimum values of the function f(x) = sin (sinx)

    Find the maximum and minimum values of the function f(x) = sin x + cos 2x .

    Find the maximum and minimum values of the function f(x) = sin x + cos 2x .

    Find the maximum or minimum values of the functions. f(x) = sin x cos x