Home
Class 12
PHYSICS
Calculate the value of Boltzmann constan...

Calculate the value of Boltzmann constant `k_(B)`, Given `R = 8.3 xx 10^(3) J//kg-mol-K` and Avogadro number, ` N = 6.03 xx 10^(26)//kg-mol`.

Text Solution

AI Generated Solution

The correct Answer is:
To calculate the value of the Boltzmann constant \( k_B \), we can use the relationship between the universal gas constant \( R \) and Avogadro's number \( N_A \). The formula is given by: \[ k_B = \frac{R}{N_A} \] ### Step 1: Identify the values of \( R \) and \( N_A \) - Given \( R = 8.3 \times 10^3 \, \text{J/(kg-mol-K)} \) - Given \( N_A = 6.03 \times 10^{26} \, \text{kg-mol} \) ### Step 2: Substitute the values into the formula Now, we substitute the values of \( R \) and \( N_A \) into the formula for \( k_B \): \[ k_B = \frac{8.3 \times 10^3 \, \text{J/(kg-mol-K)}}{6.03 \times 10^{26} \, \text{kg-mol}} \] ### Step 3: Perform the division Now, we perform the division: \[ k_B = \frac{8.3 \times 10^3}{6.03 \times 10^{26}} \, \text{J/K} \] Calculating the numerical value: \[ k_B = \frac{8.3}{6.03} \times 10^{3 - 26} \, \text{J/K} \] \[ k_B \approx 1.376 \times 10^{-23} \, \text{J/K} \] ### Final Answer Thus, the value of the Boltzmann constant \( k_B \) is approximately: \[ k_B \approx 1.376 \times 10^{-23} \, \text{J/K} \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRANSIENT CURRENT

    SL ARORA|Exercise Type C|17 Videos
  • THERMOELECTRICITY

    SL ARORA|Exercise Problems for Self Practice|13 Videos
  • UNIVERSE

    SL ARORA|Exercise PROBLEM_TYPE|6 Videos

Similar Questions

Explore conceptually related problems

The temperature, at which the root mean square velocity of hydrogen molecules equals their escape velocity from the earth, is closest to: [Boltzmann constant k _ B = 1.38 xx 10 ^( -23) J//K Avogadro Number N _ A = 6.02 xx 10 ^( 26) // Kg Radius of Earth : 6.4 xx 10 ^( 6 ) m Gravitational acceleration on Earth = 10 ms ^( -2) ]

Calculate the kinetic energy of one mole of argon at 127^(@)C . Given,Boltzmann's constant, k_(B) = 1.381 xx 10^(-23) J "molecular"^(-1) K^(-1) . Avogardro numbe, N = 6.02 xx 10^(23) "mol"^(-1)

Knowledge Check

  • If the universal gas constant is 8.3 joule mol^(-1) K^(-1) and the Avogadro's number is 6 xx 10^(23) . The mean kinetic energy of the oxygen molecules at 327^(@)C will be :

    A
    `415 xx 10^(23)` joule
    B
    `2490 xx 10^(-22)` joule
    C
    `1245 xx 10^(-23)` joule
    D
    `830 xx 10^(-22)` joule
  • The approximate number of air molecules in a 1 m^3 volume at room temperature (300 K) and atmospheric pressure is (Use R = 8.2 xx 10^(-5 ) m^3 atm/mol K and N_A =6.02 xx 10^(23) mol^(-1) )

    A
    41
    B
    450
    C
    `2.4xx 10^(25)`
    D
    `2.7 xx 10^(26)`
  • Similar Questions

    Explore conceptually related problems

    As the day advances, the temperature of an open room of volume 41. 6m^3 increases from 26.85^@C " to " 28^@C . The atmospheric pressure in the room remains 1xx 10^5 Pa. Then difference in the number of molecules present in the room after and before the heating is n xx 10^(24) (Take 1K = 273. 15^@C Universal gas constant R= 8.32 "Jmol"^(-1) K^(-1) , Avogadro's number N_A = 6.023 xx 10^(23) ). The value of n is

    If the value of Avogadro number is 6.023 xx 10^(23) mol^(-1) and the value of Boltzmann constant is 1.380 xx 10^(-23)J K^(-1) , then the number of significant digits in the calculated value of the universal gas constant is

    The kinetic energy of a molecule of oxygen at 0^(@)C is 5.64 xx 10^(-21) J . Calculate Avogadro's number. Given R = 8.31 J "mol^(-1)K^(-1) .

    Calculate the rms speed of smoke particles of mass 5 xx 10^(-17) kg in their Brownian motion in air at NTP. Given k_(B) = 1.38 xx 10^(-23) J//K

    If the value of Avogadro number is 6.023 xx 10^23 "mol"^(-1) and the value of Boltzmann constant is 1.380 xx 10^(-23) JK^(-1) , then the number of significant digits in the calculated value of the universal gas constant is [Hint: Since k and N, both have four significant figures, the value of R is also rounded off up to four significant figures.]

    The kinetic energy of a molecule of hydrogen at 0^(@) is 5.64 xx 10^(-21) J . Calculate Avogadro's number. Take R = 8.31 xx J "mole"^(-1) K^(-1)