Home
Class 12
MATHS
If cosy=xcos(a+y), with cosa!=+-1, prove...

If `cosy=xcos(a+y),` with `cosa!=+-1,` prove that `(dy)/(dx)=(cos^2(a+y))/(sina)dot`

Text Solution

AI Generated Solution

To solve the problem, we start with the given equation: \[ \cos y = x \cos(a + y) \] ### Step 1: Differentiate both sides with respect to \(x\) ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    RD SHARMA|Exercise Solved Examples And Exercises|102 Videos
  • DIRECTION COSINES AND DIRECTION RATIOS

    RD SHARMA|Exercise Solved Examples And Exercises|67 Videos

Similar Questions

Explore conceptually related problems

If cos y=x cos(a+y), with cos a!=+-1 prove that (dy)/(dx)=(cos^(2)(a+y))/(sin a)

If cos y=x cos(a+y), with cos a!=+-1 prove that (dy)/(dx)=(cos^(2)(a+y))/(sin a)

If cos y=x cos(a+y), where cos a!=-1 prove that (dy)/(dx)=(cos^(2)(a+y))/(sin a)

If cos quad yquad =quad xquad cosquad (a+y) with cos quad a!=+-1, prove that (dy)/(dx)=((cos^(2)(a+y))/(sin a))

x(dy)/(dx)=y-xcos^(2)(y/x)

If x sin(a+y)+sin a cos(a+y)=0, prove that (dy)/(dx)=(sin^(2)(a+y))/(sin a)

If x sin(a+y)+sin a cos(a+y)=0, prove that (dy)/(dx)=(s in^(2)(a+y))/(sin a)

If x sin(a+y)+sin a cos(a+y)=0, prove that (dy)/(dx)=(s in^(2)(a+y))/(sin a)

If xcos(a+y)=cosy , then prove that (dy)/(dx)=(cos^(2)(a+y))/(sina) . Hence, show that sina(d^(2)y)/(dx^(2))+sin2(a+y)dy/dx=0 .

If x sin(a+y)+sina.cos(a+y)=0 , then prove that (dy)/(dx) = (sin^(2)(a+y))/(sina)