Home
Class 12
MATHS
If f(x)=(x-1)/(x+1),x!=-1, then show tha...

If `f(x)=(x-1)/(x+1),x!=-1,` then show that `f(f(x))=-1/x` provided that `x!=0,1.`

Answer

Step by step text solution for If f(x)=(x-1)/(x+1),x!=-1, then show that f(f(x))=-1/x provided that x!=0,1. by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.

Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

If f(x)=(x-1)/(x+1),x!=-1, then show that f(f(x))=-(1)/(x), prove that x!=0

If f(x)=1/(2x+1),\ x!=-1/2,\ then show that f(f(x))=(2x+1)/(2x+3) , provided that x!=-3/2dot

If f(x)=(1-x)/(1+x) , xne1 then show that f(1/x)=-f(x)

If f(x)=(4^(x))/(4^(x)+2) , then show that f(x)+f(1-x)=1

If f(x)=x^(3)-(1)/(x^(3)), show that f(x)+f((1)/(x))=0

If f(x)=x^(3)-(1)/(x^(3)) show that f(x)+f((1)/(x))=0

If f(x)=(x+1)/(x-1) , show that f{f(x)}=xdot

If f(x)=(x-1)/(x+1) then show that f(1/x)=-f(x) and f(-1/x)=(-1)/f(x)

If f(x)=(x+1)/(x-1),x!=1 then (f(f(f(f(x)))))=f(x)

If f(x)=(1+x)/(1-x), show that: f(2x)=(3f(x)-1)/(3-f(x)) .