Home
Class 12
MATHS
If A=[[costheta,isintheta],[isintheta,co...

If `A=[[costheta,isintheta],[isintheta,costheta]],` then prove by principal of mathematical induction that `A^n=[[cosntheta, i sinn theta],[isin n theta, cos n theta]]` for all n`in` `NN`.

Text Solution

AI Generated Solution

To prove that \( A^n = \begin{pmatrix} \cos(n\theta) & i \sin(n\theta) \\ i \sin(n\theta) & \cos(n\theta) \end{pmatrix} \) for all \( n \in \mathbb{N} \), we will use the principle of mathematical induction. ### Step 1: Base Case We start with \( n = 1 \). \[ A^1 = A = \begin{pmatrix} \cos(\theta) & i \sin(\theta) \\ i \sin(\theta) & \cos(\theta) \end{pmatrix} \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • ADJOINTS AND INVERSE OF MATRIX

    RD SHARMA|Exercise QUESTION|1 Videos
  • ALGEBRA OF VECTORS

    RD SHARMA|Exercise Solved Examples And Exercises|331 Videos

Similar Questions

Explore conceptually related problems

If A=[cos theta i sin theta i sin theta cos theta], then prove by principle of mathematical induction that A^(n)=[cos n theta i sin n theta i sin n theta cos n theta] for all n in N.

Find (costheta+isintheta)^n

Knowledge Check

  • If [[cos theta,sin theta],[-sin theta,cos theta]], then lim _(n rarr infty )A^(n)/n is (where theta in R )

    A
    a zero matrix
    B
    an identity matrix
    C
    `[[0,1],[-1,0]]`
    D
    `[[0,1],[0,-1]]`
  • Similar Questions

    Explore conceptually related problems

    If A=[[cos theta,sin theta-sin theta,cos theta]] then prove that A^(n)=[[cos n theta,sin n theta-sin n theta,cos n theta]],n in N

    If A=[(cos theta, sin theta),(-sin theta, cos theta)] , then prove that A^n=[[cosntheta,sin ntheta],[-sin ntheta,cos ntheta]], n in N

    (cos3theta+isin3theta)^5/(costheta+isintheta)^6

    (cos theta + i sin theta) ^ (n) = cos n theta + i sin n theta

    Evaluate (costheta-isintheta)^n

    Show that costheta [[costheta, sintheta],[-sintheta, cos theta]] + sin theta [[sintheta ,-cos theta],[costheta, sin theta]] =1

    cos theta+cos2 theta+cos3 theta+......+cos(n-1)theta+cos n theta=