Home
Class 12
MATHS
Let f(x)=|[cosx , x , x] , [2sinx , x ,...

Let `f(x)=|[cosx , x , x] , [2sinx , x , 2x] , [sinx , x , x]|,` then `lim_(x->0)(f(x))/(x^2)` is equal to (a)` 0 `(b) `-1` (c) 2 (d) 3

Text Solution

Verified by Experts

$$f(x)=\left|\begin{array}{ccc}\cos x & x & 1 \\ 2 \sin x & x & 2 x \\ \sin x & x & x\end{array}\right|$$ $$=-x[x \sin x-\sin x-x \sin x+x \cos x]$$ $$=-x(x \cos x-\sin x)$$ $$\therefore \lim _{x \rightarrow 0} \frac{f(x)}{x^{2}}=\lim _{x \rightarrow 0} \frac{x(\sin x-x \cos x)}{x^{2}}$$ $$=\lim _{x \rightarrow 0} \frac{\sin x}{x}-\lim _{x \rightarrow 0} \cos x$$ $$=1-1=0$$
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA|Exercise Solved Examples And Exercises|149 Videos
  • DIFFERENTIABILITY

    RD SHARMA|Exercise Solved Examples And Exercises|136 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=|cosx x 1 2sinx x2xsinx x x| , then (lim)_(x->0)(f(x))/(x^2) is equal to (a) 0 (b) -1 (c) 2 (d) 3

Let (x)=|[cos x,2sin x,sin x],[x,x,x],[1,2x,x]|," then "lim_(x rarr0)(f(x))/(x^(2) is equal

Knowledge Check

  • lim_(x to 0)(sinx)/(1+cosx) is equal to :

    A
    0
    B
    `1/2`
    C
    1
    D
    -1
  • Let f(x)=|(cosx,x,1),(2sinx,x^(2),2x),(tan x,x,1)| then lim_(xto0)(f(x))/(x^(2)) is given by

    A
    0
    B
    `-1`
    C
    2
    D
    3
  • If f(x)=|{:(x,sinx,cosx),(x^2,tanx,x^3),(2x,sin2x,5x):}| then lim_(x to 0)(f'(x))/x is equal to

    A
    4
    B
    -4
    C
    2
    D
    -2
  • Similar Questions

    Explore conceptually related problems

    If f(x)=|(sinx,cosx,tanx),(x^3,x^2,x),(2x,1,x):| , then lim_(xrarr0)f(x)/x^2 is equal to

    If f(x)= abs([sinx,cosx,tanx],[x^3,x^2,x],[2x,1,x]) then lim_xrarr0 f(x)/x^2

    If f(x)=|{:(cosx,x,1),(2sinx,x^(2),2x),(tan x,x,1):}| , then underset(x to 0)lim""(f'(x))/(x)

    If f(x)=|{:(sinx,cosx,tanx),(x^(3),x^(2),x),(2x,1,x):}| , then lim_(xto0)(f(x))/(x^(2))=

    Let f(x) =|{:(secx,x^(2),x),(2sinx,x^(3),2x^(2)),(tan3x,x^(2),x):}|lim_(x to 0)f(x)/(x^(4)) is equal to