Home
Class 11
MATHS
The value of vec(AB)+vec(BC)+vec(DA)+ve...

The value of `vec(AB)+vec(BC)+vec(DA)+vec(CD)`is

A

`vec(AD)`

B

`vec(CA)`

C

`vec0`

D

`-vec(AD)`

Text Solution

Verified by Experts

The correct Answer is:
C
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • VECTOR ALGEBRA -I

    SURA PUBLICATION|Exercise ADDITIONAL PROBLEMS SECTION -A (1- MARK)|9 Videos
  • VECTOR ALGEBRA -I

    SURA PUBLICATION|Exercise ADDITIONAL PROBLEMS SECTION - B (2 - MARK)|5 Videos
  • VECTOR ALGEBRA -I

    SURA PUBLICATION|Exercise EXERCISE 8.4|10 Videos
  • TWO DIMENSIONAL ANALYTICAL GEOMETRY

    SURA PUBLICATION|Exercise ADDITIONAL PROBLEMS - SECTION - D|3 Videos

Similar Questions

Explore conceptually related problems

If vec(a), vec(b) and vec(c) are vectors with magnitudes 3,4 and 5 respectively and vec(a) + vec(b) + vec(c) = vec(0) , then find the value of vec(a).vec(b) + vec(b).vec(c) + vec(c).vec(a) .

If vec(a),vec(b),vec(c) are three non-coplanar vectors represented by concurrent edges of a parallelepiped of volume 4 cubic units, find the value of (vec(a)+vec(b))*(vec(b)xxvec(c))+(vec(b)+vec(c))*(vec(c)xxvec(a))+(vec(c)+vec(a))*(vec(a)xxvec(b))

Knowledge Check

  • The value of |vec(a)+vec(b)|^(2)+|vec(a)-vec(b)|^(2) is

    A
    `2(absvec(a)^(2)+absvec(b)^(2))`
    B
    `4vec(a).vec(b)`
    C
    `2(absvec(a)^(2)-absvec(b)^(2))`
    D
    `4absvec(a)^(2)-absvec(b)^(2)`
  • If ABCD is a parallelogram, then vec(AB)+ vec(AD)+ vec(CB)+vec(CD) is equal to

    A
    `2(vec(AB) + vec(AD))`
    B
    `4,vec(AC)`
    C
    `4,vec(BD)`
    D
    `vec0`
  • If [vec(a),vec(b),vec(c)]=1, then the value of (vec(a)*(vec(b)xxvec(c)))/((vec(c)xxvec(a))*vec(a))+(vec(b)*(vec(c)xxvec(a)))/((vec(a)xxvec(b))*vec(c))+(vec(c)(vec(a)xxvec(b)))/((vec(c)xxvec(b))*vec(a)) is

    A
    1
    B
    -1
    C
    2
    D
    3
  • Similar Questions

    Explore conceptually related problems

    If ABCD is a parallelogram then vec(AB) + vec(AD) + vec(CB) + vec(CD) = …………………… .

    If ABCD is a quadrilateral and E and F are the midpoints of AC and BD respectively, then prove that vec(AB)+vec(AD)+vec(CB)+vec(CD)=4vec(EF) .

    If ABCD is a parallelogram, then vec(AB)+vec(AD)+vec(CB)+vec(CD) is equal to

    If vec(A) + vec(B) +vec(C), "then" vec(A) xx vec(B) is :

    If vec(A) + vec(B) +vec(C)=0, "then" vec(A) xx vec(B) is :