Home
Class 11
PHYSICS
Find the workdone if a particle moves fr...

Find the workdone if a particle moves from position `vec(r )_(1)=(2hat(j)+hat(j)-3hat(k))` to a position `vec(r )_(2)=(4hat(i)+6hat(j)-7hat(k))` under the effect of force `vec(F)=(3hat(i)+2hat(j)+4hat(k))N`.

Text Solution

Verified by Experts

`vec(r) = 7 hat(i) + 4 hat(j) - 2 hat(k)`
`vec(F) = 4 hat(i) - 3 hat(j) + 5 hat(k)`
Torque, `vec(tau) = vec(r) xx vec(F)`
`vec(tau) = |(hat(i),hat(j),hat(k)),(7,4,-2),(4,-3,5)|`
`vec(tau) = hat(i) (20 - 6) - hat(j) (35 + 8) + hat(k) (-21 - 16)`
`vec(tau) = 14 hat(i) - 43 hat(j) - 37 hat(k) Nm`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MOTION OF SYSTEM OF PARTICLES AND RIGID BODIES

    SURA PUBLICATION|Exercise CREATIVE QUESTIONS (HOTS)|5 Videos
  • MOTION OF SYSTEM OF PARTICLES AND RIGID BODIES

    SURA PUBLICATION|Exercise VALUE BASED QUESTIONS|2 Videos
  • MOTION OF SYSTEM OF PARTICLES AND RIGID BODIES

    SURA PUBLICATION|Exercise CHOOSE THE CORRECT OR INCORRECT STATEMENTS :|4 Videos
  • KINETIC THEORY OF GASES

    SURA PUBLICATION|Exercise VALUE BASED QUESTIONS|4 Videos
  • NATURE OF PHYSICAL WORLD AND MEASUREMENT

    SURA PUBLICATION|Exercise ADDITIONAL QUESTIONS|241 Videos

Similar Questions

Explore conceptually related problems

Find the work done in moving a particle along a vectors vec(S)=(hat(i)-2hat(j)+3hat(k))m if applied force is vec(F)=(2hat(i)-3hat(j)+4hat(k))N .

Find the workdone in moving a particle along a vectors vec(S)=(hat(i)+2hat(j)+6hat(k))m if applied force is vec(F)=(2hat(i)+3hat(j)+5hat(k))N at an angle 60^(@) .

Knowledge Check

  • The point of inersection of the line vec(r)=(hat(i)-hat(k))+t(3hat(i)+2hat(j)+7hat(k))" and the plane "vec(r)=(hat(i)+hat(j)-hat(k))=8 is

    A
    `(8,6,22)`
    B
    `(3t+1,2t,7t-1)` for some value of t
    C
    `(-8,-6,-22)`
    D
    `(x-1)/(3)=(y-0)/(2)=(z+1)/(7)=" for some value of t "`
  • Similar Questions

    Explore conceptually related problems

    Find the parametric form of vector equation, and Cartesian equations of the plane containing the line vec(r)=(hat(i)-hat(j)+3hat(k))+t(2hat(i)-hat(j)+4hat(k))" and perpendicular to plane "vec(r)*(hat(i)+2hat(j)+hat(k))=8.

    Given vec(a) = 3 hat(i) + 2 hat(j) - hat(k) and vec(b) = hat(i) + hat(j) + 3 hat(k) Determine vec(a) - vec(b)

    Given vec(a) = 3 hat(i) + 2 hat(j) - hat(k) and vec(b) = hat(i) + hat(j) + 3 hat(k) Determine vec(a) +vec(b)

    Given vec(a) = 3 hat(i) + 2 hat(j) - hat(k) and vec(b) = hat(i) + hat(j) + 3 hat(k) Determine vec(a) +vec(b)

    Given vec(a) = 3 hat(i) + 2 hat(j) - hat(k) and vec(b) = hat(i) + hat(j) + 3 hat(k) Determine vec(a) - vec(b)

    Two vectors vec(A) = hat(i) + 2 hat(j) + 2 hat(k) and vec(B) = hat(i) + 3 hat(j) + 6 hat(k) find . their dot products,

    Two vectors vec(A) = hat(i) + 2 hat(j) + 2 hat(k) and vec(B) = hat(i) + 3 hat(j) + 6 hat(k) find . their dot products,