Home
Class 12
MATHS
For given vectors , a=2hat(i)-j+2hat(k) ...

For given vectors , `a=2hat(i)-j+2hat(k) and b=-hat(i)+j-hat(k)`, find the unit vector in the direction of the vector `vec(a)+vec(b)`.

Text Solution

Verified by Experts

The given vectors are `a=2hat(i)-hat(j)+2hat(k) and b=-hat(i)+j-hat(k)`.
`therefore vec(a)+vec(b)=(2hat(i)-hat(j)+2hat(k))+(-hat(i)+hat(j)-hat(k))`
Two vectors can be added by adding `hat(i), hat(j) and hat(k)` , components.
`therefore vec(a)+vec(b)=[2hat(i)+(-hat(i))]+[(-hat(j))+hat(j)]+[(2hat(k))+(-hat(k))]=(2hat(i)-hat(i))+(-hat(j)+hat(j))+(2hat(k)-hat(k))=hat(i)+0hat(j)+hat(k)=hat(i)+hat(k)`
Comparing with `X=xhat(i)+yhat(j)+zhat(k)`, we get `x=1,y=0,z=1`
`therefore`Magnitude `|vec(a)+vec(b)|=sqrt(x^2+y^2+z^2)=sqrt(1^2+0^2+1^2)=sqrt(2)`
Hence, the unit vector in the direction of `(a+b)`,
`((vec(a)+vec(b)))/(|vec(a)+vec(b)|)=((vec(i)+vec(k)))/(sqrt(2))=(1)/(sqrt(2))hat(i)+(1)/(sqrt(2))hat(k)`.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • VECTOR ALGEBRA

    SUBHASH PUBLICATION|Exercise TRY YOURSELF|4 Videos
  • VECTOR ALGEBRA

    SUBHASH PUBLICATION|Exercise TRY YOURSELF|4 Videos
  • TRIANGLES

    SUBHASH PUBLICATION|Exercise Exercise 5.7|1 Videos

Similar Questions

Explore conceptually related problems

Find the unit vector in the direction of vector vec(a)=2hat(i)+3hat(j)+hat(k)

Let vector be the 2hat(i)+hat(j)-hat(k) then find the unit vector in the direction of a vector

Knowledge Check

  • If vec(p)=hat(i)+hat(j), vec(q)=4hat(k)-hat(j) and vec(r )=hat(i)+hat(k) then the unit vector in the direction of 3vec(p)+vec(q)-2vec(r ) is

    A
    `(1)/(3)(hat(i)+2hat(j)+2hat(k))`
    B
    `(1)/(3)(hat(i)-2hat(j)-2hat(k))`
    C
    `(1)/(3)(hat(i)-2hat(j)+2hat(k))`
    D
    `hat(i)+2hat(j)+2hat(k)`
  • Given vec(A)=2 hat(i) - hat(j) + 2 hat(k) . The unit vector of vec(A) - vec(B) is:

    A
    `vec(k)/sqrt(10)`
    B
    `(3hat(i))/sqrt(10)`
    C
    `(3hat(i) + hat(j))/sqrt(10)`
    D
    `(-3hat(i) + hat(k))/sqrt(10)`
  • With respect to a rectangular cartesian co-ordinate system three vectors are expressed as : vec(a)=4hat(i) - hat(j),vec(b)=-3 hat(i) + 2hat(j):vec( c)=-hat(k) . The unit vector hat(r) , along the direction of the sum of these vectors is :

    A
    `hat(r )=1/sqrt(3) (hat(i) + hat(j) - hat(k))`
    B
    `hat(r )=1/sqrt(2) (hat(i) + hat(j) - hat(k))`
    C
    `hat(r )=1/sqrt(3) (hat(i) - hat(j) + hat(k))`
    D
    `hat(r )=1/sqrt(3) (hat(i) + hat(j) + hat(k))`
  • Similar Questions

    Explore conceptually related problems

    If vec a=6hat(i)+7hat(j)+7hat(k) , find the unit vector along with this vector

    Find a unit vector in the direction of vec(A) = 3hat(i) - 2hat(j) + 6hat(k) .

    let vec a= ( hat i+ hat j+ hat k) then find the unit vector along this vector

    If vec(a) = hat(i) + hat(j) + hat(k), vec(b) = 4hat(i) - 2hat(j) + 3hat(k) and vec(c ) = hat(i) - 2hat(j) + hat(k) , find a vector of magnitude 6 units which is parallel to the vector 2vec(a) - vec(b) + 3vec(c ) .

    Find a vector of magnitue 8 units in the direction of the vector, vec(a) = 5hat(i) - hat(j) + 2hat(k)