Home
Class 11
MATHS
Find the value of sin(pi/10) sin((13pi)/...

Find the value of `sin(pi/10) sin((13pi)/10)`

A


`-1/4 `

B


`1/4 `

C


`-1/2 `

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \sin\left(\frac{\pi}{10}\right) \sin\left(\frac{13\pi}{10}\right) \), we can follow these steps: ### Step 1: Simplify the Angles We know that \( \frac{13\pi}{10} \) can be rewritten using the identity \( \sin(\theta + \pi) = -\sin(\theta) \). Thus, we can express: \[ \sin\left(\frac{13\pi}{10}\right) = \sin\left(\pi + \frac{3\pi}{10}\right) = -\sin\left(\frac{3\pi}{10}\right) \] So, we have: \[ \sin\left(\frac{\pi}{10}\right) \sin\left(\frac{13\pi}{10}\right) = \sin\left(\frac{\pi}{10}\right) \left(-\sin\left(\frac{3\pi}{10}\right)\right) = -\sin\left(\frac{\pi}{10}\right) \sin\left(\frac{3\pi}{10}\right) \] ### Step 2: Use the Product-to-Sum Formula We can use the product-to-sum identities for sine: \[ \sin A \sin B = \frac{1}{2} \left[ \cos(A - B) - \cos(A + B) \right] \] Let \( A = \frac{\pi}{10} \) and \( B = \frac{3\pi}{10} \): \[ -\sin\left(\frac{\pi}{10}\right) \sin\left(\frac{3\pi}{10}\right) = -\frac{1}{2} \left[ \cos\left(\frac{\pi}{10} - \frac{3\pi}{10}\right) - \cos\left(\frac{\pi}{10} + \frac{3\pi}{10}\right) \right] \] Calculating the angles: \[ \frac{\pi}{10} - \frac{3\pi}{10} = -\frac{2\pi}{10} = -\frac{\pi}{5} \] \[ \frac{\pi}{10} + \frac{3\pi}{10} = \frac{4\pi}{10} = \frac{2\pi}{5} \] Thus, we have: \[ -\sin\left(\frac{\pi}{10}\right) \sin\left(\frac{3\pi}{10}\right) = -\frac{1}{2} \left[ \cos\left(-\frac{\pi}{5}\right) - \cos\left(\frac{2\pi}{5}\right) \right] \] Using the property \( \cos(-x) = \cos(x) \): \[ = -\frac{1}{2} \left[ \cos\left(\frac{\pi}{5}\right) - \cos\left(\frac{2\pi}{5}\right) \right] \] ### Step 3: Use Known Values of Cosine The values of \( \cos\left(\frac{\pi}{5}\right) \) and \( \cos\left(\frac{2\pi}{5}\right) \) can be derived from the pentagon properties: \[ \cos\left(\frac{\pi}{5}\right) = \frac{\sqrt{5}+1}{4}, \quad \cos\left(\frac{2\pi}{5}\right) = \frac{\sqrt{5}-1}{4} \] Substituting these values: \[ -\frac{1}{2} \left[ \frac{\sqrt{5}+1}{4} - \frac{\sqrt{5}-1}{4} \right] = -\frac{1}{2} \left[ \frac{(\sqrt{5}+1) - (\sqrt{5}-1)}{4} \right] \] This simplifies to: \[ -\frac{1}{2} \left[ \frac{2}{4} \right] = -\frac{1}{2} \cdot \frac{1}{2} = -\frac{1}{4} \] ### Final Answer Thus, we conclude that: \[ \sin\left(\frac{\pi}{10}\right) \sin\left(\frac{13\pi}{10}\right) = -\frac{1}{4} \]

To find the value of \( \sin\left(\frac{\pi}{10}\right) \sin\left(\frac{13\pi}{10}\right) \), we can follow these steps: ### Step 1: Simplify the Angles We know that \( \frac{13\pi}{10} \) can be rewritten using the identity \( \sin(\theta + \pi) = -\sin(\theta) \). Thus, we can express: \[ \sin\left(\frac{13\pi}{10}\right) = \sin\left(\pi + \frac{3\pi}{10}\right) = -\sin\left(\frac{3\pi}{10}\right) \] So, we have: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS OF COMPOUND ANGLES

    RD SHARMA|Exercise Solved Examples And Exercises|149 Videos

Similar Questions

Explore conceptually related problems

sinpi/10+sin(13pi)/(10)=?

Find the value of (a) sin(pi)/(10).sin(13pi)/(10) (b) cos^(2)48^(@)-sin^(2) 12^(@)

sin((pi)/(10))sin((3pi)/(10))=?

The value of sin((pi)/(10))sin((13 pi)/(10)) is

Find the value of sin((pi)/(7))sin((2 pi)/(7))sin((4 pi)/(7))=

Find the value of sin^(-1) (sin. (4pi)/5)

Find the value of sin^(-1)(sin((2pi)/3))

The value of sin""(pi)/(10)sin""(13pi)/(10) is

Find the value of sin^(-1)(sin(2 pi)/(3))

RD SHARMA-TRIGONOMETRIC RATIOS OF MULTIPLE AND SUBMULTIPLE ANGLES-Solved Examples And Exercises
  1. Prove that: (1+cospi/8)(1+cos(3pi)/8)(1+cos(5pi)/8)(1+cos(7pi)/8)=1/8

    Text Solution

    |

  2. If sinA=3/5, where 0^0ltAlt90^0 , then find the values of sin2A , cos2...

    Text Solution

    |

  3. Find the value of sin(pi/10) sin((13pi)/10)

    Text Solution

    |

  4. Show that: sqrt(2+sqrt(2+sqrt(2+2cos8theta)))=2costheta,0<theta<pi 8<=...

    Text Solution

    |

  5. If tanalpha=1/7,sinbeta=1/(sqrt(10)), prove thatalpha+2beta=pi/4 , whe...

    Text Solution

    |

  6. If tan(pi/4+theta/2)=tan^3(pi/4+alpha/2) then sin(theta)=(sin(alpha)(...

    Text Solution

    |

  7. If sin(theta+alpha)=aa n dsin(theta+beta)=b , prove that cos2(alpha-be...

    Text Solution

    |

  8. Prove that: t a nalpha+2tan2alpha+4tan4alpha+8cot8alpha=cotalpha

    Text Solution

    |

  9. If t a nalpha=p/q , where alpha=6beta,alpha being acute angle, prove...

    Text Solution

    |

  10. If costheta=cosalphacosbeta , prove that t a n(theta+alpha)/2t a n(th...

    Text Solution

    |

  11. If t a ntheta/2=sqrt((a-b)/(a+b))tanvarphi/2 , prove that costheta=(a ...

    Text Solution

    |

  12. Prove that: (2cos2^ntheta+1)/(2costheta+1)=(2costheta-1) (2cos2thet...

    Text Solution

    |

  13. If t a ntheta/2=sqrt((a-b)/(a+b))tanvarphi/2 , prove that costheta=(a ...

    Text Solution

    |

  14. Prove that: sin3e sin^3e+cos3ecos^3e=cos^3 2e

    Text Solution

    |

  15. If cosalpha+cosbeta+cosgamma=0 , then prove that cos3alpha+cos3beta+co...

    Text Solution

    |

  16. If costheta=(cosalpha-cosbeta)/(1-sinalphasinbeta) , prove that one v...

    Text Solution

    |

  17. If costheta=(cosalpha-cosbeta)/(1-cosalpha.cosbeta) , prove that t a n...

    Text Solution

    |

  18. sin5A=5cos^4AsinA-10cos^2Asin^3A+sin^5A

    Text Solution

    |

  19. Prove that: cos5A=16cos^5A-20cos^3A+5cosA

    Text Solution

    |

  20. Prove that: sin18^@=(sqrt(5)-1)/4 .

    Text Solution

    |