Home
Class 11
MATHS
Find the value of sin(pi/10) sin((13pi)/...

Find the value of `sin(pi/10) sin((13pi)/10)`

A


`-1/4 `

B


`1/4 `

C


`-1/2 `

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \sin\left(\frac{\pi}{10}\right) \sin\left(\frac{13\pi}{10}\right) \), we can follow these steps: ### Step 1: Simplify the Angles We know that \( \frac{13\pi}{10} \) can be rewritten using the identity \( \sin(\theta + \pi) = -\sin(\theta) \). Thus, we can express: \[ \sin\left(\frac{13\pi}{10}\right) = \sin\left(\pi + \frac{3\pi}{10}\right) = -\sin\left(\frac{3\pi}{10}\right) \] So, we have: \[ \sin\left(\frac{\pi}{10}\right) \sin\left(\frac{13\pi}{10}\right) = \sin\left(\frac{\pi}{10}\right) \left(-\sin\left(\frac{3\pi}{10}\right)\right) = -\sin\left(\frac{\pi}{10}\right) \sin\left(\frac{3\pi}{10}\right) \] ### Step 2: Use the Product-to-Sum Formula We can use the product-to-sum identities for sine: \[ \sin A \sin B = \frac{1}{2} \left[ \cos(A - B) - \cos(A + B) \right] \] Let \( A = \frac{\pi}{10} \) and \( B = \frac{3\pi}{10} \): \[ -\sin\left(\frac{\pi}{10}\right) \sin\left(\frac{3\pi}{10}\right) = -\frac{1}{2} \left[ \cos\left(\frac{\pi}{10} - \frac{3\pi}{10}\right) - \cos\left(\frac{\pi}{10} + \frac{3\pi}{10}\right) \right] \] Calculating the angles: \[ \frac{\pi}{10} - \frac{3\pi}{10} = -\frac{2\pi}{10} = -\frac{\pi}{5} \] \[ \frac{\pi}{10} + \frac{3\pi}{10} = \frac{4\pi}{10} = \frac{2\pi}{5} \] Thus, we have: \[ -\sin\left(\frac{\pi}{10}\right) \sin\left(\frac{3\pi}{10}\right) = -\frac{1}{2} \left[ \cos\left(-\frac{\pi}{5}\right) - \cos\left(\frac{2\pi}{5}\right) \right] \] Using the property \( \cos(-x) = \cos(x) \): \[ = -\frac{1}{2} \left[ \cos\left(\frac{\pi}{5}\right) - \cos\left(\frac{2\pi}{5}\right) \right] \] ### Step 3: Use Known Values of Cosine The values of \( \cos\left(\frac{\pi}{5}\right) \) and \( \cos\left(\frac{2\pi}{5}\right) \) can be derived from the pentagon properties: \[ \cos\left(\frac{\pi}{5}\right) = \frac{\sqrt{5}+1}{4}, \quad \cos\left(\frac{2\pi}{5}\right) = \frac{\sqrt{5}-1}{4} \] Substituting these values: \[ -\frac{1}{2} \left[ \frac{\sqrt{5}+1}{4} - \frac{\sqrt{5}-1}{4} \right] = -\frac{1}{2} \left[ \frac{(\sqrt{5}+1) - (\sqrt{5}-1)}{4} \right] \] This simplifies to: \[ -\frac{1}{2} \left[ \frac{2}{4} \right] = -\frac{1}{2} \cdot \frac{1}{2} = -\frac{1}{4} \] ### Final Answer Thus, we conclude that: \[ \sin\left(\frac{\pi}{10}\right) \sin\left(\frac{13\pi}{10}\right) = -\frac{1}{4} \]

To find the value of \( \sin\left(\frac{\pi}{10}\right) \sin\left(\frac{13\pi}{10}\right) \), we can follow these steps: ### Step 1: Simplify the Angles We know that \( \frac{13\pi}{10} \) can be rewritten using the identity \( \sin(\theta + \pi) = -\sin(\theta) \). Thus, we can express: \[ \sin\left(\frac{13\pi}{10}\right) = \sin\left(\pi + \frac{3\pi}{10}\right) = -\sin\left(\frac{3\pi}{10}\right) \] So, we have: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS OF COMPOUND ANGLES

    RD SHARMA|Exercise Solved Examples And Exercises|149 Videos

Similar Questions

Explore conceptually related problems

Find the value of (a) sin(pi)/(10).sin(13pi)/(10) (b) cos^(2)48^(@)-sin^(2) 12^(@)

sin((pi)/(10))sin((3pi)/(10))=?

Knowledge Check

  • sinpi/10+sin(13pi)/(10)=?

    A
    1
    B
    `1/2`
    C
    `-1/2`
    D
    None of these
  • Similar Questions

    Explore conceptually related problems

    The value of sin((pi)/(10))sin((13 pi)/(10)) is

    Find the value of sin((pi)/(7))sin((2 pi)/(7))sin((4 pi)/(7))=

    Find the value of sin^(-1) (sin. (4pi)/5)

    Find the value of sin^(-1)(sin((2pi)/3))

    The value of sin""(pi)/(10)sin""(13pi)/(10) is

    The value of sin ( pi //10) sin ( 13 pi //10) is equal to

    Find the value of sin^(-1)(sin(2 pi)/(3))