Home
Class 11
MATHS
Value of :1^3+2^3+3^3++n^3=...

Value of :`1^3+2^3+3^3++n^3=`

A

`{(n(n+1))/2}^2dot`

B

`{(n(n+1))/2}^3dot`

C

`{(n(n+1))/2}dot`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the sum \( S = 1^3 + 2^3 + 3^3 + \ldots + n^3 \), we can use the formula for the sum of cubes of the first \( n \) natural numbers. The formula is: \[ S = \left( \frac{n(n+1)}{2} \right)^2 \] ### Step-by-Step Solution: 1. **Understanding the Problem:** We need to find the sum of cubes from \( 1^3 \) to \( n^3 \). 2. **Using the Formula:** The formula for the sum of the first \( n \) cubes is given by: \[ S = \left( \frac{n(n+1)}{2} \right)^2 \] 3. **Substituting the Value of \( n \):** For any specific value of \( n \), you can substitute it into the formula. For example, if \( n = 3 \): \[ S = \left( \frac{3(3+1)}{2} \right)^2 = \left( \frac{3 \times 4}{2} \right)^2 = \left( \frac{12}{2} \right)^2 = 6^2 = 36 \] 4. **General Case:** Thus, for any \( n \), the sum of cubes can be calculated as: \[ S = \left( \frac{n(n+1)}{2} \right)^2 \] 5. **Conclusion:** Therefore, the value of \( 1^3 + 2^3 + 3^3 + \ldots + n^3 \) is: \[ \left( \frac{n(n+1)}{2} \right)^2 \]

To find the value of the sum \( S = 1^3 + 2^3 + 3^3 + \ldots + n^3 \), we can use the formula for the sum of cubes of the first \( n \) natural numbers. The formula is: \[ S = \left( \frac{n(n+1)}{2} \right)^2 \] ### Step-by-Step Solution: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SINE AND COSINE FORMULAE AND THEIR APPLICATIONS

    RD SHARMA|Exercise Solved Examples And Exercises|118 Videos
  • STATISTICS

    RD SHARMA|Exercise Solved Examples And Exercises|175 Videos

Similar Questions

Explore conceptually related problems

Let 'sigma' denotes the sum of the infinite series sum_(n=1)^(n)((n^(2)+2n+3)/(2^(n))). Compute the value of (1^(3)+2^(3)+3^(3)+......+sigma^(3))

Find the value of n if : (2/3 )^3 times (2/3 )^5 = (2/3 )^(n-2)

Knowledge Check

  • If x + ((1)/( x)) = 2 then the value of m^(3) - 3 m^(3) + 3 m + 3 n + 3 n^(2) + n^(3) is

    A
    `2^(12)`
    B
    2
    C
    `2^(5)`
    D
    `2^(7)`
  • If m=- 4 , n=-2 then the value of m^3 - 3m^2 + 3m + 3n + 3n^2 + n^3 is

    A
    `-126`
    B
    `124`
    C
    `-124`
    D
    `126`
  • If m + n =1, then the value of m ^(3) + n ^(3) + 3 mn

    A
    0
    B
    1
    C
    2
    D
    3
  • Similar Questions

    Explore conceptually related problems

    Value of lim_ (n rarr oo) (1 ^ (3) + 2 ^ (3) + 3 ^ (3) ... + n ^ (3)) / (n ^ (4))

    the value of 1.1!+ 2.2!+ 3.3!+ ....+ n.n!

    If m = - 4, n = - 2 , then the value of m^(3) - 3 m^(2) + 3 m + 3 n + 3 n ^(2) + n^( 3) is

    The value of Lt_(n rarr oo) (1+2^(4) + 3^(4) + …+n^(4))/(n^(5)) - Lt_(n rarr oo) (1+ 2^(3) + 3^(3) + …n^(3))/(n^(5)) =

    The minimum value of n such that 1 + 3 + 3^(2) +...+ 3^(n) gt 1000 is