Home
Class 9
MATHS
If n be a whole number and a(0),a(1),a(2...

If n be a whole number and `a_(0),a_(1),a_(2),..............,a_(n)(a_(n)ne0)` are constants, then the polynomial `p(x)=a_(n)x^(n)+a_(n-1)x^(n-1)+.............+a_(1)x+a_(0)` will be a zero polynomial, when

A

p(0) = 1

B

`p(a_(0))=0`

C

`p(a_(n))=0`

D

p(x) = 0

Text Solution

Verified by Experts

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • POLYNOMIALS

    CALCUTTA BOOK HOUSE|Exercise EXERCISE-1.2|45 Videos
  • POLYNOMIALS

    CALCUTTA BOOK HOUSE|Exercise EXERCISE-1.3|36 Videos
  • POLYNOMIALS

    CALCUTTA BOOK HOUSE|Exercise EXERCISE-1.4|52 Videos
  • LOGARITHM

    CALCUTTA BOOK HOUSE|Exercise Exercise - 7 (Long-answer type questions)|49 Videos
  • PROBABILITY

    CALCUTTA BOOK HOUSE|Exercise EXERCISE - 2|16 Videos

Similar Questions

Explore conceptually related problems

What are the two conditions for which the expression p(x)=a_(n)x^(n)+a_(n-1)x^(n-1)+..........+a_(1)x+a_(0) is a polynomial ?

If p(x)=a_(n)x^(n)+a_(n-1)x^(n-1)+.............+a_(1)x+a_(0) , where n is a whole number and a_(0),a_(1),a_(2),…………..,a_(n-1),a_(n)ne0 are constants then p(1) =

Knowledge Check

  • Let (1+x+x^(2))^(9)=a_(0)+a_(1)x+a_(2)x^(2)+......+a_(18)x^(18) . Then

    A
    `a_(0)+a_(2)+.......+a_(18)=a_(1)+a_(3)+......+a_(17)`
    B
    `a_(0)+a_(2)+......+a_(18)` is even
    C
    `a_(0)+a_(2)+......+a_(18)` is divisible by 9
    D
    `a_(0)+a_(2)+......+a_(18)` is divisible by 3 but not by 9
  • Similar Questions

    Explore conceptually related problems

    If (2x-1)^(8)=a_(8)x^(8)+a_(7)x^(7)+a_(6)x^(6)+..........+a_(1)x+a_(0) , then find the value of a_(0)+a_(1)+a_(2)+.........+a_(7)+a_(8) .

    If p(x)=a_(n)x^(n)+a_(n-1)x^(n-1)+.............+a_(1)x+a_(0) , where n is a whole number and a_(0)=a_(1)=a_(2)= ………….. =a_(n-1)=0nea_(n) , then p(1) =

    If p(x)=a_(n)x^(n)+a_(n-1)x^(n-1)+a_(n-2)x^(n-2)+.............+a_(1)x+a_(0) where n is a whole number and a_(0),a_(1),a_(2),……………,a_(n)(a_(n)ne0) are all constants, then p(0) =

    If a_(1) ge 0 for all t and a_(1), a_(2), a_(3),….,a_(n) are in A.P. then show that, (1)/(a_(1)a_(3)) + (1)/(a_(3)a_(5)) +...+ (1)/(a_(2n-1).a_(2n+1)) = (n)/(a_(1)a_(2n+1))

    If A_(1), A_(2),..,A_(n) are any n events, then

    Let (1+x+x^(2))^(9)=a_(0)+a_(1)x+a_(2)x^(2)+.....+a_(18)x^(18) . Then

    If (3x-1)^(7)=a_(7)x^(7)+a_(6)x^(6)+a_(5)x^(5)+.......+a_(1)x+a_(0) , then find the value of a_(7)+a_(6)+a_(5)+...........+a_(0) .