Home
Class 9
MATHS
If (x-a)^(3)+(x-b)^(3)+(x-c)^(3)-3(x-a)...

If `(x-a)^(3)+(x-b)^(3)+(x-c)^(3)-3(x-a)(x-b)(x-c)=0` , then x =

A

a

B

b

C

c

D

`(a+b+c)/(3)`

Text Solution

Verified by Experts

The correct Answer is:
D
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • FACTORISATION

    CALCUTTA BOOK HOUSE|Exercise EXAMPLES (Short answer type questions)|34 Videos
  • FACTORISATION

    CALCUTTA BOOK HOUSE|Exercise EXERCISE 2.1|30 Videos
  • FACTORISATION

    CALCUTTA BOOK HOUSE|Exercise EXERCISE 2.4 (Long -answer type questions )|11 Videos
  • DISTANCE FORMULAS

    CALCUTTA BOOK HOUSE|Exercise Long answer|11 Videos
  • FREQUENCY DISTRIBUTIONS OF GROUPED DATA

    CALCUTTA BOOK HOUSE|Exercise EXERCISE-1 (LONG TYPE ANSWER QUESTION)|14 Videos

Similar Questions

Explore conceptually related problems

If 3x = a + b + c , then find the value of (x-a)^(3)+(x-b)^(3)+(x-c)^(3)-3(x-a)(x-b)(x-c)

int (x^(3)dx)/((x-a)(x-b)(x-c))

Knowledge Check

  • If (a^3(x-b)(x-c)(x-d))/((a-b)(a-c)(a-d))+(b^3(x-c)(x-d)(x-a))/((b-c)(b-d)(b-a))+(c^3(x-d)(x-a)(x-b))/((c-d)(c-a)(c-b))+(d^3(x-a)(x-b)(x-c))/((d-a)(b-d)(d-c)) =x^3 ,then the equation having

    A
    no solution
    B
    one real and two imaginary roots
    C
    three real roots
    D
    infinitely many roots
  • If (x-a)//(b+c) + (y-b)//(c+a)+(x-c)//(a+b) = 3 then the value of x is

    A
    abc
    B
    1/(abc)
    C
    a+b+c
    D
    1/(a+b+c)
  • If (x-a)/(b+c) + (x-b)/(c+a) + (x-c)/(a+b)=3 and 1/(b+c) +1/(c+a) +1 /(a+b) != ,then the value of x is

    A
    a+b+c
    B
    a+b-c
    C
    b+c-a
    D
    c+a-b
  • Similar Questions

    Explore conceptually related problems

    Solve for x in R : |((x+a)(x-a),(x+b)(x-b),(x+c)(x-c)),((x-a)^3,(x-b)^3,(x-c)^3),((x+a)^3,(x+b)^3,(x+c)^3)| =0, a,b and c being distinct real numbers.

    If |[1 1 1];[a b c];[ a^3b^3c^3]|=(a-b)(b-c)(c-a)(a+b+c),w h e r ea ,b ,c are different, then the determinant |[1 1 1];[(x-a)^2(x-b)^2(x-c)^2];[(x-b)(x-c) (x-c)(x-a) (x-a)(x-b)| vanishes when a. a+b+c=0 b. x=1/3(a+b+c) c. x=1/2(a+b+c) d. x=a+b+c

    (a) If x + y + z=0, show that x ^(3) + y ^(3) + z ^(3)= 3 xyz. (b) Show that (a-b)^(3) + (b-c) ^(3) + (c-a)^(3) =3 (a-b) (b-c) (c-a)

    If f(x)=|[(x-a)^4, (x-a)^3, 1] , [(x-b)^4, (x-b)^3,1] , [(x-c)^4, (x-c)^3,1]| then f'(x)=lambda|[(x-a)^4,(x-a)^2,1] , [(x-b)^4, (x-b)^2, 1] , [(x-c)^4, (x-c)^2,1]| . Find the value of lambda

    Prove that both the roots of the equation (x-a)(x-b)+ (x-b)(x-c)+(x-a)(x-c)=0 are real.