Home
Class 12
MATHS
I : The vector 6i + 2j + k, 2i - 9j + 6k...

I : The vector 6i + 2j + k, 2i - 9j + 6k are mutually perpendicular.
II : The vectors I + 2j - , 2i + j + k are mutually perpendicular

A

only I is ture

B

Only II is ture

C

both I and II are true

D

Neither I nor II are true

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • PRODUCTS OF VECTORS

    DIPTI PUBLICATION ( AP EAMET)|Exercise Exercise 2 (Special Type Questions) SET -B|9 Videos
  • PRODUCTS OF VECTORS

    DIPTI PUBLICATION ( AP EAMET)|Exercise Exercise 2 (Special Type Questions) SET -C|12 Videos
  • PRODUCTS OF VECTORS

    DIPTI PUBLICATION ( AP EAMET)|Exercise Exercise 1C (Triple product of Vectors|112 Videos
  • PROBABILITY

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) SET-4|5 Videos
  • PROPERTIES OF TRIANGLES

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) Set-4|10 Videos

Similar Questions

Explore conceptually related problems

The vectors 2i - 3j + k, I - 2j + 3k, 3i + j - 2k

The unit vector perpendicular to each of the vectors 2i - j + k and 3i + 4j - k is

The sine of the angle between the vectors I + 3j - 2k, 2i - 4j - k is

A unit vector perpendicular to each of the vector 3i+2j+4k and 2i+j-k is,

A unit vector parallel to the sum of the vectors 2i + 4j - 5k, i + 2j + 3k are