Home
Class 12
MATHS
Match the following. {:("I) "(i)^i=,...

Match the following.
`{:("I) "(i)^i=,"a) "ipi//2),("II) "log_ei=,"b) "ipi//2+logpi//2),("III) "log(logi)=,"c) "sqrt2),("IV "sqrti+sqrt(-i)=,e^(-pi//2)):}`

A

d, a, c, b

B

b, c, a, d

C

d, a, b, c

D

d, c, b, a

Text Solution

Verified by Experts

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DE MOIVRE'S THEOREM

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET-4|3 Videos
  • DE MOIVRE'S THEOREM

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET-2|3 Videos
  • COORDINATE SYSTEM (3D)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) (SET- 4)|3 Videos
  • DEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUSTIONS) CHOOSE THE CORRECT ANSWER FROM THE ALTERNATIVES 1,2,3 OR 4 GIVEN (SET-4)|8 Videos

Similar Questions

Explore conceptually related problems

Express the following in log forms. (i) 2^(5)=32

Prove that the following are irrational. (i) (1)/(sqrt2)

Knowledge Check

  • |sqrt2i - sqrt(-2i)|=

    A
    `-2`
    B
    `2`
    C
    `-2i`
    D
    `2i`
  • Match the following {:(I.,(1-i)(1+2i)(1-3i)=,"a)"6-8i),(II.,(1-i)^6+(1-i)^3=,"b)"-2i),(III.,((1+i)/(1-i))^3-((1+i)/(1+i))^3=,"c)"-2-10i),(IV.,sqrt(-5+12i)=,"d)"2+3i):}

    A
    a,c,b,d
    B
    b,d,c,a
    C
    d,b,a,c
    D
    c,a,b,d
  • Match the following {:(,"Complex number","Polar form "),(I.,1+sqrt(3)i,"a)"2cis(pi//3)),(II.,1-sqrt(3)i,"b)"2cis(-2pi//3)),(III.,-1+sqrt(3)i,"c)"2cis(2pi//3)),(IV.,-1-sqrt(3)i,"d)"2cis(-pi//3)):}

    A
    a,c,b,d
    B
    b,d,c,a
    C
    a,d,c,b
    D
    c,a,b,d
  • Similar Questions

    Explore conceptually related problems

    Match the following {:("List I","List II"),("A) "B_(1),"I) Riboflavin"),("B) "B_(2),"II) Retinol"),("C) A","III) Ascorbic acid"),("D) C","IV) Thiamine"):} The correct match is

    Match the following {:("List - 1","List - II"),("I) "int_(-1)^(1)x|x|dx,"a) "(pi)/(2)),("II) "int_(0)^((pi)/(2))(1+log((4+3sinx)/(4+3cosx)))dx,"b) "int_(0)^((pi)/(2))f(x)dx),("III) "int_(0)^(a)f(x)dx,"c) "int_(0)^(a)[f(x)+f(-x)]dx),("IV) "int_(-a)^(a)f(x)dx,"d) "0),(,"e) "int_(0)^(a)f(a-x)dx):}

    log ( 7 + 5 sqrt2) =

    Match the equations in List I to general solutions in List II {:(ul"List I",ul"List II"),("I) "Tan^(2)theta=1,"a) "npipm(pi)/(6)),("II) "Cos^(2)theta=1//4,"b) "npipm(pi)/(4)),("III) "Sin^(2)theta=1//4,"c) "npipm(pi)/(3)),("IV) "Cosec^(2)theta=1,"d) "npipm(pi)/(2)),(,"e) "npipm(pi)/(8)):}

    For 0lexle2pi , Match the equations in List I to no. of solutions in List II {:(ul"List I",ul"List II"),(ul"(Trigonometric equation)",ul"(no. of solution)"),("I) "Tan^(2)x+Cot^(2)x=2,"a) 2"),("II) "Sin^(2)x-Cosx=1//4,"b) 0"),("III) "4Sin^(2)x+6Cos^(2)x=10,"c) 1"),("IV) "Sinx = 1,"d) 4"),(,):}