Home
Class 12
MATHS
""^n C0 + ^n C1 + ^n C2 + …. + ^n Cn =...

`""^n C_0 + ^n C_1 + ^n C_2 + …. + ^n C_n =`

A

`n^n`

B

`n!`

C

`2^n`

D

`2n!`

Text Solution

Verified by Experts

The correct Answer is:
C
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • BINOMIAL THEOREM

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1C (BINOMIAL THEOREM WITH RATIONAL INDEX)|68 Videos
  • BINOMIAL THEOREM

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) SET - 1|4 Videos
  • BINOMIAL THEOREM

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1A (BINOMIAL THEOREM WITH INTEGRAL INDEX)|149 Videos
  • APPLICATIONS OF DIFFERENTIATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET-4 (SPECIAL TYPE QUESTIONS)|15 Videos
  • CIRCLE

    DIPTI PUBLICATION ( AP EAMET)|Exercise Set 4|4 Videos

Similar Questions

Explore conceptually related problems

With usual notations prove that C_0 + 3.C_1 + 3^2.C_2 + ………..+3^n .C_n = 4^n

If ( 1 + x ) ^n = C _ 0 + C _ 1 x + C_ 2 x ^ 2 + … + C_n x ^ n , then C _ 0 + 2 C_1 + 3C_2 + … + (n + 1 ) C_ n is equal to

Knowledge Check

  • ""^n C_0- ^n C_1 + ^n C_2.....(-1)^n ""^n C_n=

    A
    `-1`
    B
    1
    C
    0
    D
    2
  • 3. ^n C_0-8. ^n C_1 + 13. ^n C_1 - 18 , ^n C_3 + ….. (n+1) terms =

    A
    0
    B
    `-1`
    C
    1
    D
    2
  • 1. ^n C_0+4^1. ^n C_1+4^2. ^n C_2 + 4^3. ^n C_3+….+4^n. ^n C_n =

    A
    `2^n`
    B
    `3^n`
    C
    `4^n`
    D
    `5^n`
  • Similar Questions

    Explore conceptually related problems

    If (1+x)^n = C_0 + C_1 x+ C_2 x^2 + ….....+ C_n x^n, then C_0+2. C_1 +3. C_2 +….+(n+1) . C_n=

    If (1+x)^n = C_0 + C_1x + C_2x^2 + …….+ C_n x^n then C_0 +2.C_1 + 3.C_2 + …….+(n+1).C_n =

    If n is a positive integer, then value of (3n+2)^n C_0+(3n -1)^n C_1 + (3n-4)^n C_2 + ….+2(""^n C_n) is

    Match the following. {:( "I." C_0 + 3.C_1 + 5. C_2 + …...(2n + 1). C_n=, "a)" (n+1)2^(n)),( "II." 3. C_0+7. C_1 + 11. C_2 + ….+ (4n+3). C_n=,"b)" (2n+3)2^(n)),( "III." C_0 + 4. C_1 + 7. C_2 + …. (n+1) "terms" =, "c)" (2n+3) 2^(n-1)),( "IV." (3n+2)^(n) C_0 + (3n - 1) ^n C_1+ (3n-4)^n C_2 + .......+ (""^n C_n)=, "d)" (3n+4) 2^(n-1)):}

    A : 3. C_0 + 7.C_1 + 11. C_2 + ….+(4n + 3). C_n = (2n +3) 2^n. R : a. C_0 + (a+d). C_1 + (a+2d). C_2 + …..+ (a+nd). C_n - (2a+nd). 2^(n-1).