Home
Class 12
MATHS
If sum of first n terms of an AP (having...

If sum of first n terms of an AP (having positive terms) is given by `S_n=(1+2T_n)(1-T_n)` , where `T_n` is the nth term of series , and `T_2^2=(sqrta-sqrtb)/4 (a,b in N)` . Then (a+b) is ____

Answer

Step by step text solution for If sum of first n terms of an AP (having positive terms) is given by S_n=(1+2T_n)(1-T_n) , where T_n is the nth term of series , and T_2^2=(sqrta-sqrtb)/4 (a,b in N) . Then (a+b) is ____ by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.

Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

Sum of the first n terms of an A.P. having positive terms is given by S_n=(1+2T_n)(1-T_n) (where T_n is the nth term of the series). The value of T_2^2 is (A) (sqrt(2)+1)/(2sqrt(2)) (B) (sqrt(2)-1)/(2sqrt(2)) (C) 1/(2sqrt(2)) (D) none of these

Find the sum of the first 25 terms of an A.P. whose nth term is given by a_(n)=2-3n

Knowledge Check

  • The sum of first n terms of an AP is (5n - n^(2)). The nth term of the AP is

    A
    (5-2n)
    B
    (6-2n)
    C
    (2n -5)
    D
    (2n-6)
  • Similar Questions

    Explore conceptually related problems

    Find the sum of first n term of the A.P., whose nth term is given by (2n+1).

    If sum of first n terms of an A.P is 2n^(2) + 7n, write its nth term.

    If sum of first n terms of a series is (n)/(n+1) find (1)/(T_(8)) where T_(8) is the eighth term of the series (A) 64(B)80(C)75 (D) 72

    If S_(n) the sum of first n terms of an A.P. is given by Sn = 3n^(2) - 4n , find the nth term.

    If the sum of the first n terms of an AP is given by S_n=3n^2-n then find its nth terms, first term and common difference

    The sum of the first n terms of an AP is given by S_(n) =n^(2)+5n .find the sixteenth term of the AP.

    The sum of first n terms of an A.P.is 5n-n^(2) . Find the nth term of this A.P.