Home
Class 11
MATHS
Show that the equation e^(sinx)-e^(-sinx...

Show that the equation `e^(sinx)-e^(-sinx)-4=0` has no real solution.

Text Solution

Verified by Experts

`e^(sinx)-e^(-sinx)-4=0`
`e^(sinx)-1/(e^(sinx))-4=0`
`((e^(sinx))^2-1)/(e^(sinx))=4`
`(e^(sinx))^2-4e^(sinx)-1=0`
`e^(sinx)=(4pmsqrt20)/2=(4pm2sqrt5)/2`
`e^(sinx)=2pmsqrt5=2pm2.73`
`=-0.236`
`0lte^(sinx)lte`.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Solved Examples And Exercises|361 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|1316 Videos

Similar Questions

Explore conceptually related problems

The equation e^(sin x)-e^(-sin x)-4=0 has no real solution.

The solution of the equation e^(sin x)-e^(-sin x)-4=0

Knowledge Check

  • e^(sinx)-e^(-sinx)=4 for

    A
    all real values of x
    B
    some `x in [0, pi//2]`
    C
    some `x in (-pi//2, pi//2)`
    D
    no real value of x
  • Similar Questions

    Explore conceptually related problems

    The equation e^(sinx)-e^(-sinx)-4=0 has (A) non real roots (B) integral roots (C) rational roots (D) real and unequal roots

    e^(sinx)sin(e^(x))

    The solution of the equation e^(sinx) -e^(-sinx)-4 = 0 is :

    The number of real roots of the equation e^(sinx)-e^(-sinx)-4=0 are

    The number of solutions of the equation e^(sinx) -e^(-sinx) - 4 = 0 is

    The least value of a for which the equation 4/(sinx) + 1/(1 - sinx)= a has at least one solution on the interval (0, pi/2) is

    The equation e^(sin x)-e^(-sin x)-4=0 has (A) infinite number of real roots (B) no real roots (C) exactly one real root (D) exactly four real roots