Home
Class 12
MATHS
Prove that: cot^(-1)((sqrt(1+sinx)+sqrt(...

Prove that: `cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2,x in (0,pi/4)`

Text Solution

AI Generated Solution

To prove that \[ \cot^{-1}\left(\frac{\sqrt{1+\sin x} + \sqrt{1-\sin x}}{\sqrt{1+\sin x} - \sqrt{1-\sin x}}\right) = \frac{x}{2}, \quad x \in \left(0, \frac{\pi}{4}\right), \] we will start by simplifying the expression inside the cotangent inverse function. ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Question Bank|24 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise JEE Advanced Previous Year|8 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise JEE Previous Year|20 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

Show that : cot^(-1) [(sqrt(1 + sinx) + sqrt(1 - sinx))/(sqrt(1 + sinx) - sqrt(1 - sinx))]= x/2

Write the simplest form : cot^(-1) [(sqrt(1+sinx)+sqrt(1-sin x))/(sqrt(1+sinx)-sqrt(1-sin x)]], x epsilon [0, pi/4]

Knowledge Check

  • (sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))=? (x is in IV quadrant)

    A
    `(x)/(2)`
    B
    `tan""(x)/(2)`
    C
    `sec""(x)/(2)`
    D
    `cosec""(x)/(2)`
  • value of int_0^1cot^-1((sqrt(1+sinx)+(sqrt(1-sinx)))/((sqrt(1+sinx)-(sqrt(1-sinx)))))dx

    A
    `1/4`
    B
    `1/2`
    C
    0
    D
    `1/8`
  • The value of cot^(-1)[(sqrt(1-sin x)+sqrt(1+sinx))/(sqrt((1-sinx))-sqrt((1+sinx))] is

    A
    `pi-x`
    B
    `2pi-x`
    C
    `x//2`
    D
    `pi-1/2 x`
  • Similar Questions

    Explore conceptually related problems

    If y(x) = cot^(-1) ((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))), x in ((pi)/(2), pi) , then (dy)/(dx) at x=(5pi)/(6) is :

    If y="tan"^(-1)((sqrt(1+sinx)+sqrt(1-sinx)))/((sqrt(1+sinx)-sqrt(1-sinx)))," find "(dy)/(dx).

    Differentiate w.r.t. x the function in cot^(-1)[(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))],0ltxltpi/2

    Find (dy)/(dx) of y=cot^(-1)[(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))]

    If coty=(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))," then "(dy)/(dx)=