Home
Class 12
MATHS
sin C + sin D=...

sin C + sin D=

A

` 2"sin" (C+D)/2 "cos"(C-D)/2`

B

`2"cos" (C+D)/2 "sin"(C-D)/2`

C

`2 "cos" (C+D)/2 "cos" (C-D)/2`

D

`2 "sin"(C+D)/2 "sin"(D-C)/2`

Text Solution

Verified by Experts

The correct Answer is:
A
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRANSFORMATIONS OF SUMS AND PRODUCTS

    CHHAYA PUBLICATION|Exercise Very Short Answer type Questions|14 Videos
  • TRANSFORMATIONS OF SUMS AND PRODUCTS

    CHHAYA PUBLICATION|Exercise Short Answer Type Questions|42 Videos
  • TRANSFORMATIONS OF SUMS AND PRODUCTS

    CHHAYA PUBLICATION|Exercise Comprehension Type|6 Videos
  • TANGENT AND NORMAL

    CHHAYA PUBLICATION|Exercise ASSERTION-REASON TYPE|2 Videos
  • TRIGONOMETRIC INVERSE CIRCULAR FUNCTIONS

    CHHAYA PUBLICATION|Exercise sample questions for competive examination|20 Videos

Similar Questions

Explore conceptually related problems

In any triangle ABC, prove that (sin A)/(sin B + sin C) + (sin B)/(sin C + sin A) + (sin C)/(sin A + sinB) ge 3/2 .

If (sin A)/(sin C) = (sin (A-B))/(sin (B-C)) , then show that, a^(2), b^(2), c^(2) are in A.P.

Knowledge Check

  • In a triangle ABC, (sin A+ sin B+ sin C) (sin A+sin B-sinC)= 3 sin A sin B, then which one of the following is correct ?

    A
    `B=(pi)/(2)`
    B
    `C=(pi)/(3)`
    C
    `C=(pi)/(9)`
    D
    none of these
  • Similar Questions

    Explore conceptually related problems

    In triangle ABC, sinA sin B + sin B sin C + sin C sin A = 9//4 and a = 2 , then the value of sqrt3 Delta , where Delta is the area of triangle, is _______

    Which of the following is the least? sin 3 (b) sin 2 (c) sin 1 (d) sin 7

    Which of the following is the least? (a) sin 3 (b) sin 2 (c) sin 1 (d) sin 7

    Simplify: (sin(A - B))/(sin A sin B) + (sin(B - C))/(sin B sin C) + (sin (C - A))/(sin C sin A)

    Show that 4 sin A sin Bsin C = sin(A+B-C) + sin (B+C-A) + sin(C+A-B)-sin(A+B+C).

    If A,B,C be the angles ofa triangle then prove that (sin A + sin B)(sin B + sin C)(sinC + sinA) gt sin A sin B sinC .

    Prove that sin2A + sin2B + sin2C = 4sinA · sinB · sin C