Home
Class 12
MATHS
If the function g(x) = {(ksqrt(x+1) " ...

If the function
`g(x) = {(ksqrt(x+1) " when " 0 le x le 3),(mx + 2 " when " 3 lt x le 5):}`
is differentiable, then the value of (k+m) is -

A

`(10)/(3)`

B

4

C

2

D

`(16)/(5)`

Text Solution

Verified by Experts

The correct Answer is:
C
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CALCULUS

    CHHAYA PUBLICATION|Exercise JEE Advanced Archive (2014)|2 Videos
  • CALCULUS

    CHHAYA PUBLICATION|Exercise JEE Main (AIEEE) Archive (2014)|1 Videos
  • BINOMIAL THEOREM

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Exams (Assertion -Reason Type)|2 Videos
  • CIRCLE

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Exams (E. Assertion-Reason Type)|2 Videos

Similar Questions

Explore conceptually related problems

If the function . g(x)={(ksqrt(x+1),0lexle3),(mx+2,3ltxle5):} is differentiable, then the value of k+m is

2 le 3x -4 le 5

Knowledge Check

  • If the function f (x)= {{:(e ^(2x) -1",","when " x le 0),(ax+ (bx^(2))/(2)",","when " xgt0):} is differentiable at x=0 then-

    A
    `a=1, b =2`
    B
    `a =2, b=` any value
    C
    `a =2, b=4`
    D
    `a=` any value, `b=4`
  • If f (x) ={{:(x",", "when " 0 lt x lt 1),(2-x",", "when" 1 lt x le 2):} then f'(1) is equal to-

    A
    0
    B
    1
    C
    `-1`
    D
    none of these
  • If f(x)={(x,"when "0le x le 1),(2x-1,"when "x gt 1):} then -

    A
    f(x) is continuous but not differentiable at x=1
    B
    f(x) is discontinuous at x=1
    C
    f(x) is differentiable at x=1
    D
    none of these
  • Similar Questions

    Explore conceptually related problems

    Solve 1 le |x-2| le 3

    A function is defined as follows : f(x) = {((x^(2))/(2),"when " 0 le x lt 1),(2x^(2) - 3x + (3)/(2),"when " 1 le x le 2):} Discuss the existence of f'(1).

    If the function f(x) ={x+1 if x le 1 , 2x+1 if 1 lt x le 2 and g(x) = {x^2 if -1 le x le 2 , x+2 if 2 le x le 3 then the number of roots of the equation f(g(x))=2

    If f(x)={{:(2x^(2)+3" when " x le 2,),(2x+1 " when "2 lt x le 3,),((1)/(2x-1) " when "x gt 3,):} then f( e) =

    If 0 le x le 1, then the minimum value of (x^(2) +x+1) is-