Home
Class 12
MATHS
Let f(x)=e^(ax)sin(bx+c)and f''(x)=r^2e...

Let `f(x)=e^(ax)sin(bx+c)`and `f''(x)=r^2e^(ax)sin(bx+theta)`,then-

A

`r=a^2+b^2`

B

`r=sqrt(a^2+b^2)`

C

`theta=c+2tan^-1""b/a`

D

`theta=2atan^-1""(b/a)`

Text Solution

Verified by Experts

The correct Answer is:
B, C
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SECOND ORDER DERIVATIVE

    CHHAYA PUBLICATION|Exercise Sample Question for Competitive Examination (Integer answer type)|5 Videos
  • SECOND ORDER DERIVATIVE

    CHHAYA PUBLICATION|Exercise Sample Question for Competitive Examination (Matrix Match Type)|2 Videos
  • SECOND ORDER DERIVATIVE

    CHHAYA PUBLICATION|Exercise Long answer type Question|22 Videos
  • REVISION OF PREVIOUS TWO DIMENSIONAL COORDINATE GEOMETRY

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Exams E (Assertion - Reason Type )|2 Videos
  • SEQUENCE AND SERIES

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Exams (Assertion-Reason Type)|2 Videos

Similar Questions

Explore conceptually related problems

Verify that the function y = c_(1) e^(ax) cos bx + c_(2)e^(ax) sin bx , where c_(1),c_(2) are arbitrary constants is a solution of the differential equation (d^(2)y)/(dx^(2)) - 2a(dy)/(dx) + (a^(2) + b^(2))y = 0

Find (dy)/(dx) , when y= e^(ax) sin(bx+c)

Knowledge Check

  • Let f(x)=e^(cos^-1sin(x+pi/3)) , then

    A
    `f((8pi)/9)=e^((5pi)/(18))`
    B
    `f((8pi)/9)=e^((13pi)/(18))`
    C
    `f(-(7pi)/4)=e^((pi)/(12))`
    D
    `f(-(7pi)/4)=e^((11pi)/(12))`
  • If int e^(ax) sin bx dx=(e^(ax))/(sqrt(a^(2)+b^(2)))sin(bx+m)+c , then the value of m is-

    A
    `-"tan"^(-1)(b)/(a)`
    B
    `"tan"^(-1)(b)/(a)`
    C
    `"tan"^(-1)(a)/(b)`
    D
    `-"tan"^(-1)(a)/(b)`
  • Let f(x) = (ax+b) cos x+ (cx+ d) sin x and f' (x) = x cos x be an identity in x then

    A
    a = 5, b = 2
    B
    a = 5, b = 1
    C
    a = 5, b = -5
    D
    b = 1, c = 1
  • Similar Questions

    Explore conceptually related problems

    If f(x)=ax^(2)+bx+c and f(x + 1) = f(x) + x + 1, then determine the values of a and b.

    Let f(x)=(bx+a)/(x+1), lim_(x to 0)f(x)=2 then the value of a is .

    If f(x)=ax^(2)+bx+c and f(x - 1) = f(x) + 2x + 1. then find the values of a and b.

    Let f(x)=ax^2-bx+c^2, b != 0 and f(x) != 0 for all x ∈ R . Then (a) a+c^2 2b (c) a-3b+c^2 < 0 (d) none of these

    If f(x)=ax^(2)+bx+c and f(0) = 2, f(1) = 1, f(4) = 6, then find the valuse of a, b and c.