Home
Class 12
MATHS
If vec(a)=hat(i)+hat(j)+hat(k), vec(b)=2...

If `vec(a)=hat(i)+hat(j)+hat(k), vec(b)=2hat(i)-hat(j)+3hat(k) " and " vec(c)=hat(i)-2hat(j)+hat(k)` find a unit vector in a direction parallel to vector `(2vec(a)-vec(b)+3vec(c))`.

Text Solution

Verified by Experts

The correct Answer is:
`1/sqrt(22)(3hat(i)-3hat(j)+2hat(k))`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • VECTOR

    CHHAYA PUBLICATION|Exercise SAMPLE QUESTIONS FOR COMPETITIVE EXAMINATION|18 Videos
  • VECTOR

    CHHAYA PUBLICATION|Exercise EXERCISE - SHORT ANSWER TYPE QUESTIONS|17 Videos
  • TRIGONOMETRIC RATIOS [OR FUNCTIONS] OF POSITIVE ACUTE ANGLES

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Exams (Assertion -Reason Type )|2 Videos

Similar Questions

Explore conceptually related problems

If vec(a)=hat(i)+2hat(j)-hat(k) " and " vec(b)=3hat(i)+hat(j)-5hat(k) , find a unit vector in a direction parallel to vector (vec(a)-vec(b)) .

If vec(a)=2hat(i)-2hat(j)+hat(k), vec(b)=2hat(i)+3hat(j)+6hat(k) " and " vec(c)=-hat(i)+2hat(k) , then find the magnitude and direction of the vector vec(a)-vec(b)+2vec(c) .

If vec(a)=2hat(i)+hat(j)-3hat(k), vec(b)=5hat(i)+4hat(j)+2hat(k) " and " vec(c)=3hat(i)-3hat(j)-2hat(k) , then find the magnitude of the vector vec(a)+vec(b)+2vec(c) and a unit vector in the direction of this vector.

If vec(a) = hat(i) - hat(j) + 2hat(k) , vec(b) = hat(i) +hat(j) +hat(k) and vec(c ) = 2 hat(i) - hat(j) + hat(k) find the vector vec (r ) satisfying the relations , vec(a) . vec(r ) = 1 , vec(b). vec(r ) = 2 and vec(c ) . vec (r ) = 5

If vec(a)=2hat(i)-5hat(j)+3hat(k) " and " vec(b)=hat(i)-2hat(j)-4hat(k) , find the value of abs(3vec(a)+2vec(b)).

If vec(a)=hat(i)+hat(j)-4hat(k) " and " vec(b)=4hat(i)-hat(j)-2hat(k) , then find (i) a unit vector in the direction of the vector (2vec(a)-vec(b)) and (ii) vector and scalar components of the vector (2vec(a)-vec(b)) along coordinate axes.

If vec(alpha)=2hat(i)-5hat(j)+4hat(k) " and " vec(beta)=hat(i)-4hat(j)+6hat(k), " find " (2vec(alpha)-vec(beta)) . Also find a unit vector in the direction of the vector (2vec(alpha)-vec(beta)) .

If vec(a) = hat (i) + hat (j) - hat (k) , vec (b) = 2 hat (i) - 2 hat (j) + hat (k) and vec(c ) = 3 hat (i) + 2 hat (j) - 2 hat (k) show that , vec (a). (vec(b)+vec(c)) = vec (a).vec(b) + vec (a).vec(c )

If vec (alpha ) = - hat (i) + 2 hat (j) + hat (k) , vec(b) = 3 hat(i) + hat (j) + 2 hat (k) and vec(c ) = 2 hat (i) + hat (j) + 3 hat (k) , find [ vec(c ) vec(a) vec(b)]

If vec(a) = hat (i) + hat (j) - hat (k) , vec (b) = 2 hat (i) - 2 hat (j) + hat (k) and vec(c ) = 3 hat (i) + 2 hat (j) - 2 hat (k) show that , vec (a) xx ( vec(b)+vec(c)) = vec (a) xx vec (b) + vec(a) xx vec(c)