Home
Class 12
MATHS
int(0)^(pi//2n)(dx)/(1+(tan nx)^(n)) is ...

`int_(0)^(pi//2n)(dx)/(1+(tan nx)^(n))` is equal to `n in N` :

A

`(n pi)/(4)`

B

`(pi)/(2n)`

C

`(pi)/(4n)`

D

`(2pi)/(n)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{\frac{\pi}{2n}} \frac{dx}{1 + (\tan(nx))^n} \] where \( n \in \mathbb{N} \), we will use a property of definite integrals and some trigonometric identities. ### Step 1: Use the property of definite integrals We can use the property of definite integrals: \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a + b - x) \, dx \] In our case, \( a = 0 \) and \( b = \frac{\pi}{2n} \), so we can rewrite the integral as: \[ I = \int_{0}^{\frac{\pi}{2n}} \frac{dx}{1 + (\tan(n(\frac{\pi}{2n} - x)))^n} \] ### Step 2: Simplify the expression inside the integral Now, we need to simplify \( \tan(n(\frac{\pi}{2n} - x)) \): \[ \tan(n(\frac{\pi}{2n} - x)) = \tan\left(\frac{\pi}{2} - nx\right) = \cot(nx) \] Thus, we have: \[ I = \int_{0}^{\frac{\pi}{2n}} \frac{dx}{1 + (\cot(nx))^n} \] ### Step 3: Rewrite the integral in terms of sine and cosine Recall that \( \cot(nx) = \frac{\cos(nx)}{\sin(nx)} \), so: \[ (\cot(nx))^n = \frac{(\cos(nx))^n}{(\sin(nx))^n} \] This means: \[ I = \int_{0}^{\frac{\pi}{2n}} \frac{dx}{1 + \frac{(\cos(nx))^n}{(\sin(nx))^n}} = \int_{0}^{\frac{\pi}{2n}} \frac{(\sin(nx))^n \, dx}{(\sin(nx))^n + (\cos(nx))^n} \] ### Step 4: Combine the two integrals Now we have two expressions for \( I \): 1. \( I = \int_{0}^{\frac{\pi}{2n}} \frac{dx}{1 + (\tan(nx))^n} \) 2. \( I = \int_{0}^{\frac{\pi}{2n}} \frac{(\sin(nx))^n \, dx}{(\sin(nx))^n + (\cos(nx))^n} \) Adding these two expressions gives: \[ 2I = \int_{0}^{\frac{\pi}{2n}} \left( \frac{dx}{1 + (\tan(nx))^n} + \frac{(\sin(nx))^n \, dx}{(\sin(nx))^n + (\cos(nx))^n} \right) \] ### Step 5: Evaluate the integral Notice that the two terms in the integral combine nicely: \[ 2I = \int_{0}^{\frac{\pi}{2n}} dx = \frac{\pi}{2n} \] Thus, we find: \[ I = \frac{\pi}{4n} \] ### Conclusion The value of the integral is: \[ I = \frac{\pi}{4n} \]
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2n)(dx)/(1+(cotnx)^(n)) is equal to (ninN)

int_(0)^(1)x^((m-1))(1-x)^((n-1))dx is equal to where m,n in N

Knowledge Check

  • int_(0)^(pi//2n) (dx)/(1+ cot^(n) nx) is equal to

    A
    0
    B
    `(pi)/(4n)`
    C
    `(pi)/(2n)`
    D
    `(pi)/(2)`
  • The value of I=int_(0)^(pi//4)(tan^(*n+1)x)dx+(1)/(2)int_(0)^(pi//2)tan^(n-1)((x)/(2))dx is equal to

    A
    `(1)/(n)`
    B
    `(n+2)/(2n+1)`
    C
    `(2n-1)/(n)`
    D
    `(2n-3)/(3n-2)`
  • For any n in N, int_(0)^(pi) (sin^(2)nx)/(sin^(2)x)dx is equal to

    A
    `pi`
    B
    `npi`
    C
    0
    D
    none of these
  • Similar Questions

    Explore conceptually related problems

    If the value of definite integral (int_(0)^(pi//2)(cos x)^(sqrt(2)+1)dx)/(int_(0)^(pi//2)(cos x)^(sqrt(2)-1)dx) is equal to (n - sqrt(n)) , where n in N then find the value of n.

    For any n in N,int_(0)^( pi)(sin^(2)(nx))/(sin^(2)x)dx is equal to

    If n=2m+1,m in N uu{0}, then int_(0)^((pi)/(2))(sin nx)/(sin x)dx is equal to (i)pi(ii)(pi)/(2)(iii)(pi)/(4) (iv) none of these

    If A_(n)=int_(0)^((pi)/(2))(sin(2n-1)x)/(sin x)dx,B_(n)=int_(0)^((pi)/(2))((sin nx)/(sin x))^(2)dx for n in N, Then (A)A_(n+1)=A_(n)(B)B_(n+1)=B_(n)(C)A_(n+1)-A_(n)=B_(n+1)(D)B_(n+1)-B_(n)=A_(n+1)

    For any n in N, int_(0)^(pi) (sin (2n+1)x)/(sinx)dx is equal to