Home
Class 12
MATHS
If int (2^(x))/(sqrt(1-4^(x))) dx = k s...

If ` int (2^(x))/(sqrt(1-4^(x))) dx = k sin ^(-1) (f(x)) + C` then :

A

` k = log 2, f(x) = 2^(x)`

B

`k = (1)/(log 2) , f(x) = 2^(x)`

C

`k = log 2, f(x) = 4^(x)`

D

`k = (1)/(log2) , f(x) = 4^(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{2^x}{\sqrt{1 - 4^x}} \, dx \) and express it in the form \( k \sin^{-1}(f(x)) + C \), we will follow these steps: ### Step 1: Substitution Let \( t = 2^x \). Then, we have: \[ 4^x = (2^2)^x = (2^x)^2 = t^2 \] Also, the differential \( dx \) can be expressed as: \[ dx = \frac{dt}{2^x \log 2} = \frac{dt}{t \log 2} \] ### Step 2: Rewrite the Integral Substituting \( t \) into the integral, we get: \[ \int \frac{2^x}{\sqrt{1 - 4^x}} \, dx = \int \frac{t}{\sqrt{1 - t^2}} \cdot \frac{dt}{t \log 2} \] This simplifies to: \[ \frac{1}{\log 2} \int \frac{1}{\sqrt{1 - t^2}} \, dt \] ### Step 3: Integrate The integral \( \int \frac{1}{\sqrt{1 - t^2}} \, dt \) is a standard integral that results in: \[ \sin^{-1}(t) + C \] Thus, we have: \[ \int \frac{2^x}{\sqrt{1 - 4^x}} \, dx = \frac{1}{\log 2} \left( \sin^{-1}(t) + C \right) \] ### Step 4: Substitute Back Now, substituting back \( t = 2^x \): \[ \int \frac{2^x}{\sqrt{1 - 4^x}} \, dx = \frac{1}{\log 2} \sin^{-1}(2^x) + C \] ### Step 5: Identify \( k \) and \( f(x) \) From the expression \( \int \frac{2^x}{\sqrt{1 - 4^x}} \, dx = k \sin^{-1}(f(x)) + C \), we can identify: - \( k = \frac{1}{\log 2} \) - \( f(x) = 2^x \) ### Final Answer Thus, the values are: - \( k = \frac{1}{\log 2} \) - \( f(x) = 2^x \)
Promotional Banner

Similar Questions

Explore conceptually related problems

If int(2^(x))/(sqrt(1-4^(x)))dx=k.sin^(-1)(2^(x))+c , then : k=

int(2^(x))/(sqrt(1-4^(x)))dx=k sin^(-1)2^(x)+c, then k=

int(sin^(-1)x)/(sqrt(1-x^(2)))dx

int(sin^(-1)x)/(sqrt(1-x^(2)))dx

int(x sin^(-1)x)/(sqrt(1-x^(2)))dx

int (sin^-1x)/sqrt(1-x^2) dx.

int((sin^(-1)x)^(3))/(sqrt(1-x^(2)))dx