Home
Class 12
MATHS
If int (2^(x))/(sqrt(1-4^(x))) dx = k s...

If ` int (2^(x))/(sqrt(1-4^(x))) dx = k sin ^(-1) (f(x)) + C` then :

A

` k = log 2, f(x) = 2^(x)`

B

`k = (1)/(log 2) , f(x) = 2^(x)`

C

`k = log 2, f(x) = 4^(x)`

D

`k = (1)/(log2) , f(x) = 4^(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{2^x}{\sqrt{1 - 4^x}} \, dx \) and express it in the form \( k \sin^{-1}(f(x)) + C \), we will follow these steps: ### Step 1: Substitution Let \( t = 2^x \). Then, we have: \[ 4^x = (2^2)^x = (2^x)^2 = t^2 \] Also, the differential \( dx \) can be expressed as: \[ dx = \frac{dt}{2^x \log 2} = \frac{dt}{t \log 2} \] ### Step 2: Rewrite the Integral Substituting \( t \) into the integral, we get: \[ \int \frac{2^x}{\sqrt{1 - 4^x}} \, dx = \int \frac{t}{\sqrt{1 - t^2}} \cdot \frac{dt}{t \log 2} \] This simplifies to: \[ \frac{1}{\log 2} \int \frac{1}{\sqrt{1 - t^2}} \, dt \] ### Step 3: Integrate The integral \( \int \frac{1}{\sqrt{1 - t^2}} \, dt \) is a standard integral that results in: \[ \sin^{-1}(t) + C \] Thus, we have: \[ \int \frac{2^x}{\sqrt{1 - 4^x}} \, dx = \frac{1}{\log 2} \left( \sin^{-1}(t) + C \right) \] ### Step 4: Substitute Back Now, substituting back \( t = 2^x \): \[ \int \frac{2^x}{\sqrt{1 - 4^x}} \, dx = \frac{1}{\log 2} \sin^{-1}(2^x) + C \] ### Step 5: Identify \( k \) and \( f(x) \) From the expression \( \int \frac{2^x}{\sqrt{1 - 4^x}} \, dx = k \sin^{-1}(f(x)) + C \), we can identify: - \( k = \frac{1}{\log 2} \) - \( f(x) = 2^x \) ### Final Answer Thus, the values are: - \( k = \frac{1}{\log 2} \) - \( f(x) = 2^x \)
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

int(2^(x))/(sqrt(1-4^(x)))dx=k sin^(-1)2^(x)+c, then k=

int(sin^(-1)x)/(sqrt(1-x^(2)))dx

Knowledge Check

  • If int(2^(x))/(sqrt(1-4^(x)))dx=k.sin^(-1)(2^(x))+c , then : k=

    A
    `log2`
    B
    `log(sqrt2)`
    C
    `(1)/(2)`
    D
    `(1)/(log2)`
  • If int (2^x)/(sqrt((1 - 4^x))) dx = lambda sin^(-1) (2^x) then lambda is equal to

    A
    `log 2`
    B
    `1//2`
    C
    `1/2 "log" 2`
    D
    `1/(log 2)`
  • int(sin2x)/(sqrt(1-sin^(4)x))dx=

    A
    `sin^(-1)(2sinx)+c`
    B
    `sin^(-1)(sin^(2)x)+c`
    C
    `-sin^(-1)((sinx)/(sqrt2))+c`
    D
    `log(1-sin^(4)x)+c`
  • Similar Questions

    Explore conceptually related problems

    int(sin^(-1)x)/(sqrt(1-x^(2)))dx

    int(x sin^(-1)x)/(sqrt(1-x^(2)))dx

    int (sin^-1x)/sqrt(1-x^2) dx.

    int((sin^(-1)x)^(3))/(sqrt(1-x^(2)))dx

    If int2^x/(sqrt(1-4^x))dx=ksin^(-1)(2^x)+C , then k is equal to