Home
Class 12
MATHS
Given two orthogonal vectors vec(A) and...

Given two orthogonal vectors `vec(A)` and `vec(B)` each of length unity . Let `vec(P)` be the vector satisfying the equation `vec(P) xx vec(B) = vec(A) - vec(P)` . Then
`vec(P)` is equal to .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the vector \(\vec{P}\) that satisfies the equation: \[ \vec{P} \times \vec{B} = \vec{A} - \vec{P} \] where \(\vec{A}\) and \(\vec{B}\) are orthogonal unit vectors. ### Step 1: Cross Product Both Sides with \(\vec{B}\) We start by taking the cross product of both sides of the equation with \(\vec{B}\): \[ \vec{P} \times \vec{B} \times \vec{B} = (\vec{A} - \vec{P}) \times \vec{B} \] ### Step 2: Simplify Left Side Using the vector triple product identity, we can simplify the left side: \[ \vec{P} \times \vec{B} \times \vec{B} = (\vec{P} \cdot \vec{B}) \vec{B} - (\vec{B} \cdot \vec{B}) \vec{P} \] Since \(\vec{B} \cdot \vec{B} = 1\): \[ \vec{P} \times \vec{B} \times \vec{B} = (\vec{P} \cdot \vec{B}) \vec{B} - \vec{P} \] ### Step 3: Simplify Right Side Now, we simplify the right side: \[ (\vec{A} - \vec{P}) \times \vec{B} = \vec{A} \times \vec{B} - \vec{P} \times \vec{B} \] ### Step 4: Substitute Back into the Equation Now we substitute these results back into our equation: \[ (\vec{P} \cdot \vec{B}) \vec{B} - \vec{P} = \vec{A} \times \vec{B} - \vec{P} \times \vec{B} \] ### Step 5: Rearranging the Equation Rearranging gives us: \[ \vec{P} + \vec{P} \times \vec{B} = \vec{A} \times \vec{B} + (\vec{P} \cdot \vec{B}) \vec{B} \] ### Step 6: Isolate \(\vec{P}\) Now we can isolate \(\vec{P}\): \[ 2\vec{P} = \vec{A} \times \vec{B} + (\vec{P} \cdot \vec{B}) \vec{B} \] ### Step 7: Divide by 2 Finally, we divide by 2 to find \(\vec{P}\): \[ \vec{P} = \frac{1}{2} \left( \vec{A} \times \vec{B} + (\vec{P} \cdot \vec{B}) \vec{B} \right) \] ### Step 8: Dot Product with \(\vec{B}\) Now, we take the dot product of both sides with \(\vec{B}\): \[ \vec{P} \cdot \vec{B} = \frac{1}{2} \left( \vec{A} \times \vec{B} \cdot \vec{B} + (\vec{P} \cdot \vec{B}) (\vec{B} \cdot \vec{B}) \right) \] ### Step 9: Evaluate Dot Products Since \(\vec{A} \times \vec{B} \cdot \vec{B} = 0\) (because they are orthogonal) and \(\vec{B} \cdot \vec{B} = 1\): \[ \vec{P} \cdot \vec{B} = \frac{1}{2} (\vec{P} \cdot \vec{B}) \] ### Step 10: Solve for \(\vec{P} \cdot \vec{B}\) This leads to: \[ \frac{1}{2} (\vec{P} \cdot \vec{B}) = 0 \implies \vec{P} \cdot \vec{B} = 0 \] ### Conclusion Thus, \(\vec{P}\) is orthogonal to \(\vec{B}\). Finally, we can express \(\vec{P}\): \[ \vec{P} = \frac{1}{2} \left( \vec{A} - \vec{A} \times \vec{B} \right) \] ### Final Answer \[ \vec{P} = \frac{1}{2} \left( \vec{A} - \vec{A} \times \vec{B} \right) \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • VECTOR

    MOTION|Exercise EXERCISE - 4 ( LEVEL -I)|36 Videos
  • VECTOR

    MOTION|Exercise EXERCISE - 4 ( LEVEL-II)|41 Videos
  • VECTOR

    MOTION|Exercise EXERCISE - 2 ( LEVEL -II)|15 Videos
  • TRIGONOMETRIC EQUATION

    MOTION|Exercise EXERCISE 4|10 Videos

Similar Questions

Explore conceptually related problems

Given two orthogonal vectors vec(A) and vec(B) each of length unity . Let vec(P) be the vector satisfying the equation vec(P) xx vec(B) = vec(A) - vec(P) . Then (vec(P) xx vec(B)) xx vec(B) is equal to .

Two vectors vec P and vec Q

Knowledge Check

  • Three vector vec(A) , vec(B) , vec(C ) satisfy the relation vec(A)*vec(B)=0 and vec(A).vec(C )=0 . The vector vec(A) is parallel to

    A
    `vec(B)`
    B
    `vec(C )`
    C
    `vec(B).vec(C )`
    D
    `vec(B)xxvec(C )`
  • If vec(a),vec(b), vec(c) be three non - zero vectors satisfying the condition vec(a) xx vec(b) = vec(c) and vec(b) xx vec(c) = vec(a) , then .

    A
    `vec(a), vec(b),vec(c)` are orthogonal is pairs
    B
    `[vec(a),vec(b),vec(c)] = [vec(a)]^(2)`
    C
    `[vec(a) vec(b) vec(c)] =[vec(c)]`
    D
    `|vec(b)| = |vec(c)|`
  • If vec(a) and vec(b) are two vectors then the value of (vec(a) + vec(b)) xx (vec(a) - vec(b)) is

    A
    `2(vec(b) xx vec(a))`
    B
    `-2(vec(b) xx vec(a))`
    C
    `(vec(b) xx vec(a))`
    D
    `vec(a) xx vec(b)`
  • Similar Questions

    Explore conceptually related problems

    If vec A and vec B are two vectors satisfying the relation vec A cdot vec B = |vec A xx vec B| . Then the value of |vec A - vec B| will be :

    If vec P and vec Q are two vectors, then the value of (vec P + vec Q) xx (vec P - vec Q) is

    For any two vectors A and B, if vec(A).vec(B) = |vec(A) xx vec(B)| , the magnitude of vec(C ) = vec(A) + vec(B) is equal to :

    The resultant of two vectors vec(P) and vec(Q) is vec(R ) . If the magnitude of vec(Q) is doubled, the new resultant vector becomes perpendicular to vec(P) . Then, the magnitude of vec(R ) is equal to

    If vec(b) and vec(c) are two non-collinear vectors such that vec(a) || (vec(b) xx vec(c)) , then (vec(a) xx vec(b)).(vec(a) xx vec(c)) is equal to