Home
Class 12
PHYSICS
If the vectors (hat(i) + hat(j) + hat(k)...

If the vectors `(hat(i) + hat(j) + hat(k))` and `3hat(i)` form two sides of a triangle, then area of the triangle is :

A

`sqrt(3)` unit

B

`2sqrt(3)` unit

C

`(3)/(sqrt(2))` unit

D

`3sqrt(2)` unit

Text Solution

AI Generated Solution

The correct Answer is:
To find the area of the triangle formed by the vectors \( \vec{A} = \hat{i} + \hat{j} + \hat{k} \) and \( \vec{B} = 3\hat{i} \), we can use the formula for the area of a triangle given by two vectors: \[ \text{Area} = \frac{1}{2} |\vec{A} \times \vec{B}| \] ### Step 1: Write down the vectors We have: - \( \vec{A} = \hat{i} + \hat{j} + \hat{k} \) - \( \vec{B} = 3\hat{i} \) ### Step 2: Set up the cross product The cross product \( \vec{A} \times \vec{B} \) can be calculated using the determinant of a matrix formed by the unit vectors and the components of the vectors: \[ \vec{A} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ 3 & 0 & 0 \end{vmatrix} \] ### Step 3: Calculate the determinant Using the determinant, we can calculate: \[ \vec{A} \times \vec{B} = \hat{i} \begin{vmatrix} 1 & 1 \\ 0 & 0 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 1 \\ 3 & 0 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & 1 \\ 3 & 0 \end{vmatrix} \] Calculating the determinants: 1. For \( \hat{i} \): \[ \begin{vmatrix} 1 & 1 \\ 0 & 0 \end{vmatrix} = 0 \] 2. For \( \hat{j} \): \[ \begin{vmatrix} 1 & 1 \\ 3 & 0 \end{vmatrix} = (1)(0) - (1)(3) = -3 \] 3. For \( \hat{k} \): \[ \begin{vmatrix} 1 & 1 \\ 3 & 0 \end{vmatrix} = (1)(0) - (1)(3) = -3 \] Putting it all together: \[ \vec{A} \times \vec{B} = 0\hat{i} + 3\hat{j} - 3\hat{k} = 3\hat{j} - 3\hat{k} \] ### Step 4: Find the magnitude of the cross product Now we find the magnitude of \( \vec{A} \times \vec{B} \): \[ |\vec{A} \times \vec{B}| = \sqrt{(0)^2 + (3)^2 + (-3)^2} = \sqrt{0 + 9 + 9} = \sqrt{18} = 3\sqrt{2} \] ### Step 5: Calculate the area of the triangle Now we can calculate the area: \[ \text{Area} = \frac{1}{2} |\vec{A} \times \vec{B}| = \frac{1}{2} (3\sqrt{2}) = \frac{3\sqrt{2}}{2} \] Thus, the area of the triangle formed by the vectors is: \[ \text{Area} = \frac{3\sqrt{2}}{2} \]
Doubtnut Promotions Banner Mobile Dark
|