Home
Class 12
PHYSICS
If vec(a) = 2hat(i) + hat(j) - hat(k) an...

If `vec(a) = 2hat(i) + hat(j) - hat(k)` and `vec(b) = hat(i) - hat(k)`, then projection of `vec(a)` on `vec(b)` will be :

A

`sqrt((3)/(2))`

B

`(3)/(sqrt(2))`

C

`(1)/(sqrt(2))`

D

`(3sqrt(6))/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the projection of vector **a** on vector **b**, we can use the formula for the projection of vector **a** onto vector **b**: \[ \text{proj}_{\vec{b}} \vec{a} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^2} \vec{b} \] ### Step 1: Identify the vectors Given: \[ \vec{a} = 2\hat{i} + \hat{j} - \hat{k} \] \[ \vec{b} = \hat{i} - \hat{k} \] ### Step 2: Calculate the dot product \(\vec{a} \cdot \vec{b}\) The dot product of two vectors \(\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}\) and \(\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}\) is given by: \[ \vec{a} \cdot \vec{b} = a_1b_1 + a_2b_2 + a_3b_3 \] For our vectors: - \(a_1 = 2\), \(a_2 = 1\), \(a_3 = -1\) - \(b_1 = 1\), \(b_2 = 0\), \(b_3 = -1\) Calculating the dot product: \[ \vec{a} \cdot \vec{b} = (2)(1) + (1)(0) + (-1)(-1) = 2 + 0 + 1 = 3 \] ### Step 3: Calculate the magnitude of vector \(\vec{b}\) The magnitude of vector \(\vec{b}\) is given by: \[ |\vec{b}| = \sqrt{b_1^2 + b_2^2 + b_3^2} \] Calculating it: \[ |\vec{b}| = \sqrt{(1)^2 + (0)^2 + (-1)^2} = \sqrt{1 + 0 + 1} = \sqrt{2} \] ### Step 4: Calculate the projection Using the projection formula: \[ \text{proj}_{\vec{b}} \vec{a} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^2} \vec{b} \] First, we need \(|\vec{b}|^2\): \[ |\vec{b}|^2 = (\sqrt{2})^2 = 2 \] Now substituting the values: \[ \text{proj}_{\vec{b}} \vec{a} = \frac{3}{2} \vec{b} \] Substituting \(\vec{b}\): \[ \text{proj}_{\vec{b}} \vec{a} = \frac{3}{2} (\hat{i} - \hat{k}) = \frac{3}{2} \hat{i} - \frac{3}{2} \hat{k} \] ### Final Answer: The projection of vector **a** on vector **b** is: \[ \text{proj}_{\vec{b}} \vec{a} = \frac{3}{2} \hat{i} - \frac{3}{2} \hat{k} \]
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

If vec(A)=2hat(i)+3hat(j)-hat(k) and vec(B)=-hat(i)+3hat(j)+4hat(k) , then find the projection of vec(A) on vec(B) .

If vec(a) = hat(i) + hat(j) + 2 hat(k) and vec(b) = 3 hat(i) + 2 hat(j) - hat(k) , find the value of (vec(a) + 3 vec(b)) . ( 2 vec(a) - vec(b)) .

Knowledge Check

  • If vec(a) = 2hat(i) + hat(j) + 2hat(k), vec(b) = 5hat(i) - 3hat(j) + hat(k) , then projection of vec(a) on vec(b) is

    A
    `3hat(i) - 3hat(j) + hat(k)`
    B
    `(9(5hat(i) - 3hat(j) + hat(k))/(7))`
    C
    `((5hat(i) - 3hat(j) - hat(k)))/(35)`
    D
    `9(5hat(i) - 3hat(j) + hat(k))`
  • If vec(a) = 2hat(i) + 3hat(j) - 6hat(k) and vec(b) = 12 hat(j) + 5 hat(k) . then (projection of vec(a) on vec(b)//("projection of b on a") )

    A
    `7//13`
    B
    `13//7`
    C
    `20//13`
    D
    `13//20`
  • If vec(a)= hat(i) - 2hat(j) + 5hat(k) and vec(b) = 2hat(i) + hat(j) -3hat(k) , then (vec(b) - vec(a)).(3 vec(a) +vec(b)) equal to?

    A
    106
    B
    `-106`
    C
    53
    D
    `-53`
  • Similar Questions

    Explore conceptually related problems

    If vec(a)=5hat(i)-hat(j)-3hat(k) and vec(b)=hat(i)+3hat(j)-5hat(k) , then show that the vectors (vec(a)+vec(b)) and (vec(a)-vec(b)) are perpendicular.

    If vec a=hat i-hat j and vec b=-hat j+hat k find the projection of vec a on vec b

    If vec(a)=hat(i)+2hat(j)-3hat(k) and vec(b)=3hat(i)-hat(j)+2hat(k) , then show that (vec(a)+vec(b)) is perpendicular to (vec(a)-vec(b)) .

    If vec(a)= hat(i) - 2hat(j) + 5hat(k), vec(b)= 2hat(i) +hat(j)- 3hat(k) then what is (vec(a)- vec(b)).(3 vec(a) +vec(b)) equal to ?

    If vec(A) = hat(i) + hat(j) + hat(k) and B = -hat(i) - hat(j) - hat(k) . Then angle made by (vec(A) - vec(B)) with vec(A) is :