Home
Class 10
MATHS
Prove the following identities: (sin^2A)...

Prove the following identities: `(sin^2A)/(cos^2A)+(cos^2A)/(sin^2A)=1/(sin^2Acos^2A)-2`

Text Solution

Verified by Experts

Given
L.H.S
`(sin^2A)/(cos^2A)+(cos^2A)/(sin^2A)`
=`(sin^4A+cos^4A)/(sin^2Acos^2A)`
=`((sin^2A)^2+(cos^2A)^2)/(sin^2Acos^2A)`
=`((sin^2A+cos^2A)^2-2sin^2Acos^2A)/(sin^2Acos^2A)`
...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIANGLES

    RD SHARMA|Exercise All Questions|361 Videos
  • TRIGONOMETRIC RATIOS

    RD SHARMA|Exercise All Questions|249 Videos

Similar Questions

Explore conceptually related problems

Prove the following identities: (sin+cos A)/(sin A-cos A)+(sin-cos A)/(sin A+cos A)=(2)/(sin^(2)A-cos^(2)A)=(2)/(2sin^(2)A-1)=(2)/(1-2cos^(2)A)

Prove the following identities: cos^(4)A-cos^(2)A=sin^(4)A-sin^(2)A

Prove the following identities: sin^(4)A+cos^(4)A=1-2sin^(2)A cos^(2)A

Prove the following identities: sin^(6)A+cos^(6)A=1-3sin^(2)A cos^(2)A

Prove the following identities: (cos A)/(1-tan A)+(sin^(2)A)/(sin A-cos A)=sin A+cos A

Prove the following identities: tan^(2)A-tan^(2)B=(cos^(2)B-cos^(2)A)/(cos^(2)B cos^(2)A)=(sin^(2)A-sin^(2)B)/(cos^(2)A cos^(2)B)(sin A-sin B)/(cos A+cos B)+(cos A-cos B)/(sin A+sin B)=0

Prove the following identities: sin^(4)A-cos^(4)A=sin^(2)A-cos^(2)A=2sin^(2)A-1=1-2cos^(2)A

Prove the following identities: (cos A)/(1-sin A)+(sin A)/(1-cos A)+1=(sin A cos A)/((1-sin A)(1-cos A))((1+cot A+tan A)(sin A-cos A)/(sec^(3)A-cos ec^(3)A)=sin^(2)A cos^(2)A

Prove the following identity: (1-s in A cos A)/(cos A(sec A-cos ecA))(sin^(2)A-cos^(2))/(sin^(3)A+cos^(3)A)=sin A

Prove the following identities: (sin A+sec A)^(2)+(cos A+csc A)^(2)=(1+sec A csc A)^(2)cot^(2)A((sec A-1)/(1+sin A))+sec^(2)A((sin A-1)/(1+sec A))=0