Home
Class 12
CHEMISTRY
The uncertainty in the position of an el...

The uncertainty in the position of an electron moving with a velocity of `3xx10^(4)` cm `sec^(-1)` accurate up to 0.011 %

A

1.92 cm

B

7.68 cm

C

0.175 cm

D

3.84 cm

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the uncertainty in the position of an electron moving with a given velocity, we can follow these steps: ### Step 1: Understand Heisenberg's Uncertainty Principle Heisenberg's uncertainty principle states that the product of the uncertainties in position (Δx) and momentum (Δp) of a particle is greater than or equal to a constant: \[ \Delta x \cdot \Delta p \geq \frac{h}{4\pi} \] where \( h \) is Planck's constant. ### Step 2: Identify Given Values - Velocity of the electron, \( v = 3 \times 10^4 \, \text{cm/s} \) - Accuracy = 0.011% - Mass of the electron, \( m = 9.1 \times 10^{-31} \, \text{kg} \) - Planck's constant, \( h = 6.626 \times 10^{-34} \, \text{J s} \) ### Step 3: Convert Velocity to SI Units Convert the velocity from cm/s to m/s: \[ v = 3 \times 10^4 \, \text{cm/s} = 3 \times 10^2 \, \text{m/s} \] ### Step 4: Calculate the Uncertainty in Velocity (Δv) The uncertainty in velocity can be calculated using the given accuracy: \[ \Delta v = v \times \frac{\text{accuracy}}{100} = (3 \times 10^2) \times \frac{0.011}{100} \] \[ \Delta v = 3 \times 10^2 \times 0.00011 = 3.33 \times 10^{-2} \, \text{m/s} \] ### Step 5: Calculate the Uncertainty in Momentum (Δp) The uncertainty in momentum (Δp) can be calculated as: \[ \Delta p = m \cdot \Delta v = (9.1 \times 10^{-31} \, \text{kg}) \cdot (3.33 \times 10^{-2} \, \text{m/s}) \] \[ \Delta p = 3.03 \times 10^{-32} \, \text{kg m/s} \] ### Step 6: Calculate the Uncertainty in Position (Δx) Using Heisenberg's uncertainty principle: \[ \Delta x \geq \frac{h}{4\pi \Delta p} \] Substituting the values: \[ \Delta x \geq \frac{6.626 \times 10^{-34}}{4 \cdot 3.14 \cdot 3.03 \times 10^{-32}} \] ### Step 7: Perform the Calculation Calculating the denominator: \[ 4 \cdot 3.14 \cdot 3.03 \times 10^{-32} \approx 3.77 \times 10^{-31} \] Now substituting back: \[ \Delta x \geq \frac{6.626 \times 10^{-34}}{3.77 \times 10^{-31}} \approx 0.175 \times 10^{-2} \, \text{m} \] ### Step 8: Convert to Centimeters Convert the result from meters to centimeters: \[ \Delta x \geq 0.175 \times 10^{-2} \, \text{m} = 0.175 \, \text{cm} \] ### Step 9: Final Answer The uncertainty in the position of the electron is: \[ \Delta x \geq 0.175 \, \text{cm} \] ### Conclusion The correct answer is \( 0.175 \, \text{cm} \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

The uncertainty in the position of an electron moving with a velocity of 1 xx 10^4 cm s^-1 (accurate up to 0.011 % ) will be :

The uncertainty in the position of an electron (mass = 9.1 xx 10^-28 g) moving with a velocity of 3.0 xx 10^4 cm s^-1 accurate up to 0.001 % will be (Use (h)/(4 pi) in the uncertainty expression, where h = 6.626 xx 10^-27 erg - s )

Uncertainty in the position of an electron mass (9. 1 xx 10^(31) kg) moving with a velocity 300 ms^(-1) accurate uptp 0.001 % will be :

The wavelength associated with an electron moving with a velocity of 10^8 "cm s"^(-1) is

Calculate the uncertainty in the position of an electron if the uncertainty in its velocity is 5.77xx10^(5) m s^(-1) .