Home
Class 12
PHYSICS
If s=(t^(3))/(3)-(1)/(2)t^(2)-6t+5, Find...

If `s=(t^(3))/(3)-(1)/(2)t^(2)-6t+5`, Find the value of `(d^(2)s)/(dt^(2))` at `t=1`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \(\frac{d^2s}{dt^2}\) at \(t=1\) for the given function \(s = \frac{t^3}{3} - \frac{1}{2}t^2 - 6t + 5\), we will follow these steps: ### Step 1: Differentiate \(s\) to find \(\frac{ds}{dt}\) The function is: \[ s = \frac{t^3}{3} - \frac{1}{2}t^2 - 6t + 5 \] Now we differentiate \(s\) with respect to \(t\): \[ \frac{ds}{dt} = \frac{d}{dt}\left(\frac{t^3}{3}\right) - \frac{d}{dt}\left(\frac{1}{2}t^2\right) - \frac{d}{dt}(6t) + \frac{d}{dt}(5) \] Calculating each term: - \(\frac{d}{dt}\left(\frac{t^3}{3}\right) = t^2\) - \(\frac{d}{dt}\left(-\frac{1}{2}t^2\right) = -t\) - \(\frac{d}{dt}(-6t) = -6\) - \(\frac{d}{dt}(5) = 0\) Combining these results: \[ \frac{ds}{dt} = t^2 - t - 6 \] ### Step 2: Differentiate \(\frac{ds}{dt}\) to find \(\frac{d^2s}{dt^2}\) Now we differentiate \(\frac{ds}{dt}\): \[ \frac{d^2s}{dt^2} = \frac{d}{dt}(t^2 - t - 6) \] Calculating each term: - \(\frac{d}{dt}(t^2) = 2t\) - \(\frac{d}{dt}(-t) = -1\) - \(\frac{d}{dt}(-6) = 0\) Combining these results: \[ \frac{d^2s}{dt^2} = 2t - 1 \] ### Step 3: Evaluate \(\frac{d^2s}{dt^2}\) at \(t=1\) Now we substitute \(t = 1\) into \(\frac{d^2s}{dt^2}\): \[ \frac{d^2s}{dt^2} \bigg|_{t=1} = 2(1) - 1 = 2 - 1 = 1 \] ### Final Answer: The value of \(\frac{d^2s}{dt^2}\) at \(t=1\) is: \[ \boxed{1} \]

To find the value of \(\frac{d^2s}{dt^2}\) at \(t=1\) for the given function \(s = \frac{t^3}{3} - \frac{1}{2}t^2 - 6t + 5\), we will follow these steps: ### Step 1: Differentiate \(s\) to find \(\frac{ds}{dt}\) The function is: \[ s = \frac{t^3}{3} - \frac{1}{2}t^2 - 6t + 5 \] ...
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

Find the value of ln(int_(0)^(1)e^(t^(2)+t)(2t^(2)+t+1)dt)

s-t=3,(s)/(3)+(t)/(2)=6

Knowledge Check

  • If x = (t^(3))/(3) - (5)/(2)t^(2) + 6t + 1 , then the value (d^(2)x)/(d t^(2)) , when (dx)/(d t) is zero is :

    A
    `+- 1`
    B
    `+-2`
    C
    `+- 3`
    D
    `+- 4`
  • If S=(t^(3))/(3)-2t^(2)+3t+4 , then

    A
    at t = 1 , S is minimum
    B
    at t = 1 , S is maximum
    C
    at t = 3 , S is maximum
    D
    at t = 2 , S is minimum
  • If s=sqrt(t^(2)+1) , then (d^(2)s)/(dt^(2)) is equal to

    A
    `(1)/(s)`
    B
    `(1)/(s^(2))`
    C
    `(1)/(s^(3))`
    D
    `(1)/(s^(4))`
  • Similar Questions

    Explore conceptually related problems

    Evaluate int(t^(2))/(sqrt(1-t^(2)))dt

    If int_(0)^(1)(e^(t))/(1+t)dt=a, then find the value of int_(0)^(1)(e^(t))/((1+t)^(2))dt in terms of a

    If x=cos t(3-2cos^(2)t) and y=sin t(3-2s epsilon^(2)t) find the value of (dy)/(dx) at t=(pi)/(4)

    If s=sqrt(t^(2)+1) , then (d^(2)s)/(dt^(2)) is equal to

    If v = 3t^2 - 2t + 1 , find the value of t for which (dv)/(dt) = 0