To solve the expression \(\sqrt{10} \cdot \sqrt{15}\), we can use the property of square roots that states \(\sqrt{a} \cdot \sqrt{b} = \sqrt{a \cdot b}\).
### Step-by-step solution:
1. **Combine the square roots**:
\[
\sqrt{10} \cdot \sqrt{15} = \sqrt{10 \cdot 15}
\]
2. **Calculate the product inside the square root**:
\[
10 \cdot 15 = 150
\]
So, we have:
\[
\sqrt{10 \cdot 15} = \sqrt{150}
\]
3. **Simplify \(\sqrt{150}\)**:
To simplify \(\sqrt{150}\), we can factor 150 into its prime factors:
\[
150 = 2 \cdot 3 \cdot 5^2
\]
Therefore:
\[
\sqrt{150} = \sqrt{2 \cdot 3 \cdot 5^2}
\]
4. **Apply the square root property**:
Using the property \(\sqrt{a \cdot b} = \sqrt{a} \cdot \sqrt{b}\), we can separate the square root:
\[
\sqrt{150} = \sqrt{2} \cdot \sqrt{3} \cdot \sqrt{5^2}
\]
Since \(\sqrt{5^2} = 5\), we have:
\[
\sqrt{150} = 5 \cdot \sqrt{2 \cdot 3} = 5 \cdot \sqrt{6}
\]
5. **Final result**:
Therefore, the expression \(\sqrt{10} \cdot \sqrt{15}\) simplifies to:
\[
\sqrt{10} \cdot \sqrt{15} = 5\sqrt{6}
\]
### Final Answer:
\[
\sqrt{10} \cdot \sqrt{15} = 5\sqrt{6}
\]
To solve the expression \(\sqrt{10} \cdot \sqrt{15}\), we can use the property of square roots that states \(\sqrt{a} \cdot \sqrt{b} = \sqrt{a \cdot b}\).
### Step-by-step solution:
1. **Combine the square roots**:
\[
\sqrt{10} \cdot \sqrt{15} = \sqrt{10 \cdot 15}
\]
...
Topper's Solved these Questions
NUMBER SYSTEMS
NCERT EXEMPLAR|Exercise SHORT ANSWER TYPE QUESTIONS|1 Videos
LINES AND ANGLES
NCERT EXEMPLAR|Exercise Lines And Angles|34 Videos
POLYNOMIALS
NCERT EXEMPLAR|Exercise Polynomials|72 Videos
Similar Questions
Explore conceptually related problems
sqrt(10+2sqrt(6)+2sqrt(10)+2sqrt(15)) is equal to (sqrt(2)+sqrt(3)+sqrt(5))(sqrt(2)+sqrt(3)-sqrt(5))(c)(sqrt(2)+sqrt(5)-sqrt(3))(d) None of these
sqrt(10)xx sqrt(15)
The value of the determinant Delta=|(sqrt(13)+sqrt3,2sqrt5,sqrt5),(sqrt(15)+sqrt(26),5,sqrt(10)),(3+sqrt(65),sqrt(15),5)| is equal to
sqrt(8-2sqrt(15)) is equal to 3-sqrt(5)b*sqrt(5)-sqrt(3) c.5-sqrt(3)d.sqrt(5)+sqrt(3)
sqrt(176+sqrt(2401)) is equal to (a) 14 (b) 15 (c) 18 (d) 24
NCERT EXEMPLAR-NUMBER SYSTEMS-SHORT ANSWER TYPE QUESTIONS