Home
Class 11
MATHS
If f(x) = (tanx)/(x-pi), then lim(xrarr(...

If `f(x) = (tanx)/(x-pi)`, then `lim_(xrarr(pi))f(x)=`……………….

A

`1`

B

`0`

C

`-1`

D

none of the above

Text Solution

Verified by Experts

The correct Answer is:
A

Given, `f(x) = (tanx)/(x-pi)= lim_(xto(pi))(tanx)/(x-pi) = lim_(pi-xto0)(-tan(pi-x))/(-pi-x)` `[therefore lim_(xto0)(tanx)/(x) =1]`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NCERT EXEMPLAR|Exercise OBJECTIVE TYPE QUESTIONS|23 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NCERT EXEMPLAR|Exercise Fillers|16 Videos
  • LINEAR INEQUALITIES

    NCERT EXEMPLAR|Exercise Objective Type Questions|14 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(|x|)/(x) , then show that lim_(xrarr0) f(x) does not exist.

A real valued function, f(x) , f:(0,(pi)/(2))rarr R^+ satisfies the differential equation xf'(x)=1+f(x){x^(2)f(x)-1} and f((pi)/(4))=(4)/(pi) , then lim_(x rarr0)f(x) , is

Knowledge Check

  • Let f(x)=(sqrt(x+3))/(x+1) , then lim_(xrarr-3)f(x)

    A
    is 0
    B
    does not exist
    C
    is `1//2`
    D
    is `-1//2`
  • If f(x) =(sin (e^(x-2)-))/(log(x-1)) then lim_(xrarr2)f(x) is given by

    A
    `-2`
    B
    `-1`
    C
    `0`
    D
    `1`
  • Let f(x)=(tanx)/(x), then log_(e)(lim_(xrarr0)([f(x)]+x^(2))^((1)/({f(x)}))) is equal, (where [.] denotes greatest integer function and {.} fractional part)

    A
    1
    B
    2
    C
    3
    D
    4
  • Similar Questions

    Explore conceptually related problems

    If y(x)=|x|-3, "find"lim_(xrarr3)f(x).

    If f(x)=0 be a quadratic equation such that f(-pi)=f(pi)=0 and f((pi)/(2))=(-3 pi^(2))/(4), then lim_(x rarr pi)(f(x))/(sin(sin x)) is equal to:

    If f(x)=0 be a quadratic equation such that f(-pi)=f(pi)=0 and f((pi)/(2))=(-3 pi^(2))/(4), then lim_(x rarr pi)(f(x))/(sin(sin x)) is equal to:

    If f(x) =x(e^([x]+|x|)-2)/([x]+|x|) , then lim_(xrarr0)f(x) is.

    lim_(xrarr(pi)/(2)) (1-sinx)tanx=