NCERT EXEMPLAR|Exercise OBJECTIVE TYPE QUESTIONS|23 Videos
INTRODUCTION TO THREE DIMENSIONAL GEOMETRY
NCERT EXEMPLAR|Exercise Fillers|16 Videos
LINEAR INEQUALITIES
NCERT EXEMPLAR|Exercise Objective Type Questions|14 Videos
Similar Questions
Explore conceptually related problems
Let f(x)=(sqrt(x+3))/(x+1) , then lim_(xrarr-3)f(x)
If f(x) =(sin (e^(x-2)-))/(log(x-1)) then lim_(xrarr2)f(x) is given by
Let f(x)=(tanx)/(x), then log_(e)(lim_(xrarr0)([f(x)]+x^(2))^((1)/({f(x)}))) is equal, (where [.] denotes greatest integer function and {.} fractional part)
If f(x) =x(e^([x]+|x|)-2)/([x]+|x|) , then lim_(xrarr0)f(x) is.
If f(x)=(|x|)/(x) , then show that lim_(xrarr0) f(x) does not exist.
A real valued function, f(x) , f:(0,(pi)/(2))rarr R^+ satisfies the differential equation xf'(x)=1+f(x){x^(2)f(x)-1} and f((pi)/(4))=(4)/(pi) , then lim_(x rarr0)f(x) , is
lim_(xrarr(pi)/(2)) (1-sinx)tanx=
If y(x)=|x|-3, "find"lim_(xrarr3)f(x).
If f(x)=0 be a quadratic equation such that f(-pi)=f(pi)=0 and f((pi)/(2))=(-3 pi^(2))/(4), then lim_(x rarr pi)(f(x))/(sin(sin x)) is equal to:
If f(x)=0 be a quadratic equation such that f(-pi)=f(pi)=0 and f((pi)/(2))=(-3 pi^(2))/(4), then lim_(x rarr pi)(f(x))/(sin(sin x)) is equal to: