Home
Class 12
MATHS
Solve the following differential equatio...

Solve the following differential equations
`(x dy -y dx)y sin (y/x)= (y dx + x dy)x cos (y/x)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation \[ (x \, dy - y \, dx) \, y \sin\left(\frac{y}{x}\right) = (y \, dx + x \, dy) \, x \cos\left(\frac{y}{x}\right), \] we will follow these steps: ### Step 1: Rewrite the Equation We start with the given equation: \[ (x \, dy - y \, dx) \, y \sin\left(\frac{y}{x}\right) = (y \, dx + x \, dy) \, x \cos\left(\frac{y}{x}\right). \] ### Step 2: Expand Both Sides Expanding both sides gives: \[ x y \sin\left(\frac{y}{x}\right) \, dy - y^2 \sin\left(\frac{y}{x}\right) \, dx = x y \cos\left(\frac{y}{x}\right) \, dx + x^2 \cos\left(\frac{y}{x}\right) \, dy. \] ### Step 3: Rearranging the Terms Rearranging the terms leads to: \[ \left(x y \sin\left(\frac{y}{x}\right) - x^2 \cos\left(\frac{y}{x}\right)\right) dy = \left(x y \cos\left(\frac{y}{x}\right) + y^2 \sin\left(\frac{y}{x}\right)\right) dx. \] ### Step 4: Separate Variables Now we can separate the variables \(dy\) and \(dx\): \[ \frac{dy}{dx} = \frac{x y \cos\left(\frac{y}{x}\right) + y^2 \sin\left(\frac{y}{x}\right)}{x y \sin\left(\frac{y}{x}\right) - x^2 \cos\left(\frac{y}{x}\right)}. \] ### Step 5: Introduce Substitution Let \(v = \frac{y}{x}\), then \(y = vx\) and \(dy = v \, dx + x \, dv\). Substitute these into the equation: \[ \frac{dy}{dx} = v + x \frac{dv}{dx}. \] ### Step 6: Substitute and Simplify Substituting \(y = vx\) into the equation gives: \[ v + x \frac{dv}{dx} = \frac{x(vx) \cos(v) + (vx)^2 \sin(v)}{x(vx) \sin(v) - x^2 \cos(v)}. \] ### Step 7: Simplify Further This simplifies to: \[ x \frac{dv}{dx} = \frac{v^2 \sin(v) + v \cos(v)}{v \sin(v) - \cos(v)} - v. \] ### Step 8: Rearranging Again Rearranging gives: \[ x \frac{dv}{dx} = \frac{v^2 \sin(v) + v \cos(v) - v(v \sin(v) - \cos(v))}{v \sin(v) - \cos(v)}. \] ### Step 9: Integrate Separate variables and integrate both sides: \[ \int \frac{v \sin(v) - \cos(v)}{2v \cos(v)} dv = \int \frac{dx}{x}. \] ### Step 10: Final Solution After integrating and simplifying, we arrive at: \[ \sec\left(\frac{y}{x}\right) = kxy, \] where \(k\) is a constant of integration.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise FOUR MARK QUESTIONS|52 Videos
  • CONTINUITY AND DIFFERENTIABILTY

    CBSE COMPLEMENTARY MATERIAL|Exercise 4 Marks Questions|36 Videos
  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos

Similar Questions

Explore conceptually related problems

Solve the following differential equations : x (dy)/(dx)=y-x

Solve the following differential equations : cos(x+y)dy=dx

Solve the following differential equations : (dy)/(dx)+y= cos x

Solve the following differential equations: x(dy)/(dx)=x+y

Solve the following differential equations : (dy)/(dx)=y-2 sin x .

Solve the following differential equation: (dy)/(dx)+y=sin x

Solve the following differential equation: (dy)/(dx)+y=cos x

Solve the following differential equation: x(dy)/(dx)-y=x^2

Solve the following differential equations : cos x (dy)/(dx)+y= sin x .

Solve the following differential equations: (x+y)(dx-dy)=dx+dy