Home
Class 12
MATHS
Show that the lines vec r=( hat i+ hat ...

Show that the lines ` vec r=( hat i+ hat j- hat k)+lambda(3 hat i- hat j)a n d vec r=(4 hat i- hat k)+mu(2 hat i+3 hat k)` are coplanar. Also, find the plane containing these two lines.

Text Solution

AI Generated Solution

To show that the lines given by the equations \[ \vec{r} = (\hat{i} + \hat{j} - \hat{k}) + \lambda(3\hat{i} - \hat{j}) \] and ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TANGENTS AND NORMALS

    RD SHARMA|Exercise Solved Examples And Exercises|244 Videos
  • TRIGONOMETRIC IDENTITIES

    RD SHARMA|Exercise EXAMPLE|1 Videos

Similar Questions

Explore conceptually related problems

Show that the lines vec r=hat i+hat j+hat k+lambda(hat i-hat j+hat k) and vec r=4hat j+2hat k+mu(2hat i-hat j+3hat k) are coplanar.Also,Find the equation of the plane containing these lines.

Show that the lines vec r=(2 hat j-3 hat k)+lambda( hat i+2 hat j+3 hat k)a n d\ vec r=(2 hat i+6 hat j+3 hat k)+mu(2 hat i+3 hat j+4 hat k) are coplanar. Also, find the equation of the plane containing them.

vec r=(4hat i-hat j)+lambda(hat i+2hat j-3hat k) and vec r=(hat i-hat j+2hat k)+mu(2hat i+4hat j-5hat k)

If vec r=(hat i+2hat j+3hat k)+lambda(hat i-hat j+hat k) and vec r=(hat i+2hat j+3hat k)+mu(hat i+hat j-hat k) are bisector of two lines is

The lines vec r=(hat i+hat j+hat k)alpha+3hat k and vec r=(hat i-2hat j+hat k)beta+3hat k

Show that the lines vec( r) =(hat(i) +hat(j) -hat(k)) +lambda (3hat(i) -hat(j)) " and " vec( r) =(4hat(i) -hat(k)) + mu (2hat(i) +3hat(k)) intersect . Find the point of the intersection.

Shortest distance between the lines: vec r=(4hat i-hat j)+lambda(hat i+2hat j-3hat k) and vec r=(hat i-hat j+2hat k)+u(2hat i+4hat j-5hat k)

Find the angle between the lines vec r*(hat i+2hat j-hat k)+lambda(hat i-hat j+hat k) and the plane vec r*(2hat i-hat j+hat k)=4

Find the angle between the line vec r=hat i+2hat j-hat k+lambda(hat i-hat j+hat k) and the plane vec r*(2hat i-hat j+hat k)=4

Find the shortest distance between the lines vec r=(hat i+2hat j+hat k)+lambda(hat i-hat j+hat k) and vec r=(2hat i-hat j-hat k)+mu(2hat i+hat j+2hat k)