Home
Class 11
MATHS
sinx=2^n*cos\ x/2*cos\ x/(2^2)*cos\ x/(2...

`sinx=2^n*cos\ x/2*cos\ x/(2^2)*cos\ x/(2^3)*...*cos\ x/(2^n)*sin\ x/(2^n)`

Promotional Banner

Similar Questions

Explore conceptually related problems

We have f (x) lim_(n to oo) cos (x)/(2) cos (x)/(2^(2)) cos (x)/(2^(3)) cos (x)/(2^(4)) …… …. cos (x)/(2^(n)) = ("sin" x)/(2^(n) "sin" (x)/(2^(n))) using the identity lim_(n to oo) lim_(x to 0) f(x) equals

We have f (x) lim_(n to oo) cos (x)/(2) cos (x)/(2^(2)) cos (x)/(2^(3)) cos (x)/(2^(4)) …… …. cos (x)/(2^(n)) = ("sin" x)/(2^(n) "sin" (x)/(2^(n))) using the identity lim_(n to oo) lim_(x to 0) f(x) equals

Evaluate :lim_(n rarr oo)(cos((x)/(2))cos((x)/(2^(2)))cos((x)/(2^(3)))......cos((x)/(2^(n))))

cos x*cos2x*cos4x......cos(2^(n-1)x)=(sin2^(n)x)/(2^(n)sin x)AA n in N

If cos((x)/(2))cos((x)/(2^(2)))cos((x)/(2^(square)))......cos((x)/(2^(n)))=(sin x)/(sin((x)/(2^(n)))) prove (1)/(2)tan((x)/(2))+(1)/(4)tan((x)/(4))...(.1)/(2^(2n))tan((x)/(2^(n)))=(1)/(2^(n))cot((x)/(2^(n)))-cot x