Home
Class 11
MATHS
sinx=2^n*cos\ x/2*cos\ x/(2^2)*cos\ x/(2...

`sinx=2^n*cos\ x/2*cos\ x/(2^2)*cos\ x/(2^3)*...*cos\ x/(2^n)*sin\ x/(2^n)`

Answer

Step by step text solution for sinx=2^n*cos\ x/2*cos\ x/(2^2)*cos\ x/(2^3)*...*cos\ x/(2^n)*sin\ x/(2^n) by MATHS experts to help you in doubts & scoring excellent marks in Class 11 exams.

Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

We have f (x) lim_(n to oo) cos (x)/(2) cos (x)/(2^(2)) cos (x)/(2^(3)) cos (x)/(2^(4)) …… …. cos (x)/(2^(n)) = ("sin" x)/(2^(n) "sin" (x)/(2^(n))) using the identity lim_(n to oo) lim_(x to 0) f(x) equals

Evaluate :lim_(n rarr oo)(cos((x)/(2))cos((x)/(2^(2)))cos((x)/(2^(3)))......cos((x)/(2^(n))))

Knowledge Check

  • If cos x/2 cos x/2^2… cos x/2^n= sin x /

    A
    cot x-cot `x/2^n`
    B
    `1/2^n cot (x/2^n)-cot x`
    C
    `1/2^n tan (x/2^n)-tan x`
    D
    `1/2 cotx- 1/2^n-cot (x/2^n)`
  • We have f (x) lim_(n to oo) cos (x)/(2) cos (x)/(2^(2)) cos (x)/(2^(3)) cos (x)/(2^(4)) …… …. cos (x)/(2^(n)) = ("sin" x)/(2^(n) "sin" (x)/(2^(n))) using the identity lim_(n to oo) sum_(k=1)^(n) (1)/(2^(2k)) sec^(2) ((x)/(2^(k))) equals

    A
    `cosec^(2) x - (1)/(x^(2))`
    B
    `cosec^(2) x + (1)/(x^(2))`
    C
    `cosec^(2) x - x^(2)`
    D
    `cosec^(2) x + x^(2)`
  • We have f (x) lim_(n to oo) cos (x)/(2) cos (x)/(2^(2)) cos (x)/(2^(3)) cos (x)/(2^(4)) …… …. cos (x)/(2^(n)) = ("sin" x)/(2^(n) "sin" (x)/(2^(n))) using the identity lim_(n to oo) sum_(k=1)^(n) tan ((x)/(2^(k))) equals

    A
    `(1)/(x - tan x`
    B
    `(1)/(x) - cot x`
    C
    `x + cot x`
    D
    `x + tan x`
  • Similar Questions

    Explore conceptually related problems

    cos x*cos2x*cos4x......cos(2^(n-1)x)=(sin2^(n)x)/(2^(n)sin x)AA n in N

    If cos((x)/(2))cos((x)/(2^(2)))cos((x)/(2^(square)))......cos((x)/(2^(n)))=(sin x)/(sin((x)/(2^(n)))) prove (1)/(2)tan((x)/(2))+(1)/(4)tan((x)/(4))...(.1)/(2^(2n))tan((x)/(2^(n)))=(1)/(2^(n))cot((x)/(2^(n)))-cot x

    We have f (x) lim_(n to oo) cos (x)/(2) cos (x)/(2^(2)) cos (x)/(2^(3)) cos (x)/(2^(4)) …… …. cos (x)/(2^(n)) = ("sin" x)/(2^(n) "sin" (x)/(2^(n))) using the identity lim_(n to oo) lim_(x to 0) f(x) equals

    If cos""(x)/(2).cos""(x)/(2^(2))...cos""(x)/(2^(n))=(sinx)/(2^(n)sin""(x)/(2^(n))) , then (1)/(2)tan""(x)/(2)+(1)/(2^(2))tan""(x)/(2^(2))+...+(1)/(2^(n))tan""(x)/(2^(n)) is

    A : cos 24^(@) cos 48^(@) cos 96^@ cos 168^(@) = 1//16 R : cos x cos 2 x cos 4x ........ cos (2^n x)=( sin (2^(n+1)x))/(2^(n+1) sin x )