Home
Class 12
PHYSICS
If the mass of neutron = 1.7 xx 10^(-27)...

If the mass of neutron = `1.7 xx 10^(-27)` kg, then the de-Broglie wavelength of neutron of energy 3 eV is `(h = 6.6 xx 10^(-34) J s)`

A

`1.6 xx 10^(-16)m`

B

`1.6 xx 10^(-11)m`

C

`1.4 xx 10^(-10)m`

D

`1.4 xx 10^(-11)m`

Text Solution

AI Generated Solution

The correct Answer is:
To find the de-Broglie wavelength of a neutron with a given energy, we can follow these steps: ### Step 1: Understand the de-Broglie wavelength formula The de-Broglie wavelength (\( \lambda \)) is given by the formula: \[ \lambda = \frac{h}{p} \] where \( h \) is Planck's constant and \( p \) is the momentum. ### Step 2: Relate momentum to kinetic energy The momentum \( p \) can be expressed in terms of kinetic energy (\( K \)): \[ p = \sqrt{2mK} \] where \( m \) is the mass of the neutron and \( K \) is its kinetic energy. ### Step 3: Substitute the expression for momentum into the de-Broglie wavelength formula Substituting \( p \) into the de-Broglie wavelength formula gives: \[ \lambda = \frac{h}{\sqrt{2mK}} \] ### Step 4: Convert energy from eV to Joules Given that the energy \( K = 3 \, \text{eV} \), we need to convert this to Joules: \[ K = 3 \, \text{eV} \times 1.6 \times 10^{-19} \, \text{J/eV} = 4.8 \times 10^{-19} \, \text{J} \] ### Step 5: Substitute known values into the formula Now we can substitute \( h = 6.6 \times 10^{-34} \, \text{J s} \), \( m = 1.7 \times 10^{-27} \, \text{kg} \), and \( K = 4.8 \times 10^{-19} \, \text{J} \) into the de-Broglie wavelength formula: \[ \lambda = \frac{6.6 \times 10^{-34}}{\sqrt{2 \times 1.7 \times 10^{-27} \times 4.8 \times 10^{-19}}} \] ### Step 6: Calculate the denominator First, calculate the expression under the square root: \[ 2 \times 1.7 \times 10^{-27} \times 4.8 \times 10^{-19} = 1.632 \times 10^{-45} \] Now take the square root: \[ \sqrt{1.632 \times 10^{-45}} \approx 1.278 \times 10^{-22} \] ### Step 7: Calculate the de-Broglie wavelength Now substitute back into the equation for \( \lambda \): \[ \lambda = \frac{6.6 \times 10^{-34}}{1.278 \times 10^{-22}} \approx 5.16 \times 10^{-12} \, \text{m} \] ### Final Answer Thus, the de-Broglie wavelength of the neutron is approximately: \[ \lambda \approx 5.16 \times 10^{-12} \, \text{m} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • NTA JEE MOCK TEST 44

    NTA MOCK TESTS|Exercise PHYSICS|25 Videos
  • NTA JEE MOCK TEST 46

    NTA MOCK TESTS|Exercise PHYSICS|25 Videos

Similar Questions

Explore conceptually related problems

Calculate the de-Broglie wavelength of an electron of kinetic energy 100 eV. Given m_(e)=9.1xx10^(-31)kg, h=6.62xx10^(-34)Js .

An electron is moving with a kinetic energy of 2.275 xx 10^(25) J . Calculate its de-Broglie wavelength. (Mass of electron = 9.1 xx 10^(-31) kg, h = 6.6 xx 10^(-34) J s)

Knowledge Check

  • If the mass of neutron is 1.7 xx 10^(-27) kg, then the de - Broglie wavelength of neutron of energy 3 eV is: (h = 6.6 xx 10^(-34) Js)

    A
    `1.4 xx 10^(-11) m`
    B
    `1.6 xx 10^(-10)m`
    C
    `1.65 xx 10^(-11)m`
    D
    `1.4 xx 10^(-10)m`
  • The de Broglie wavelength of neutrons in thermal equilibrium is (given m_n=1.6xx10^(-27) kg)

    A
    `(30.8)/(sqrtT)A`
    B
    `(3.08)/(sqrtT)A`
    C
    `(0.308)/(sqrtT)A`
    D
    `(0.0308)/(sqrtT)A`
  • The de-Broglie wavelength of thermal neutrons at 27^(@) C will be

    A
    `1.77 Å`
    B
    1.77 mm
    C
    1.77 cm
    D
    1.77 m
  • Similar Questions

    Explore conceptually related problems

    A proton (mass = 1.66 xx 10^(-27)kg) is moving with kinetic energy 5 xx 10^(-27) J calculate the de Broglie wavelength associated with it ? (h = 6.6 xx 10^(-34)Js)

    A neutron is an unchanged particle of mass 1.67xx10^(-27) kg . Calculate the de-Broglie wavelength of the neutron moving with a velocity, such that K.E. is 0.04 eV, h=6.62xx10^(-34)Js .

    What is the (a) momentum (b) speed and (c) de-Broglie wavelength of an electron with kinetic energy of 120 eV. Given h=6.6xx10^(-34)Js, m_(e)=9xx10^(-31)kg , 1eV=1.6xx10^(-19)J .

    The energy of a photon of wavelength 4000 Å is (use h=6.66xx10^(-34) J-s)

    The wavelength of de - Broglie wave is 2 mu m , then its momentum is ( h = 6.63 xx 10^(-34 J-s)