Home
Class 12
MATHS
If the inequality x^(2)+ax+a^(2)+6alt0 i...

If the inequality `x^(2)+ax+a^(2)+6alt0` is satisfied for all `x" in "(1, 2)`, then the sum of all the integral values of a must be equal to

A

`-10`

B

`-15`

C

`-21`

D

`-28`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( x^2 + ax + a^2 + 6a < 0 \) for all \( x \) in the interval \( (1, 2) \), we need to analyze the quadratic expression and find the values of \( a \) that satisfy the conditions. ### Step 1: Evaluate the inequality at the endpoints of the interval 1. **Evaluate at \( x = 1 \)**: \[ f(1) = 1^2 + a(1) + a^2 + 6a < 0 \] Simplifying this gives: \[ 1 + a + a^2 + 6a < 0 \implies a^2 + 7a + 1 < 0 \] 2. **Evaluate at \( x = 2 \)**: \[ f(2) = 2^2 + a(2) + a^2 + 6a < 0 \] Simplifying this gives: \[ 4 + 2a + a^2 + 6a < 0 \implies a^2 + 8a + 4 < 0 \] ### Step 2: Analyze the quadratic inequalities 1. **For \( a^2 + 7a + 1 < 0 \)**: - Calculate the discriminant: \[ D = b^2 - 4ac = 7^2 - 4 \cdot 1 \cdot 1 = 49 - 4 = 45 \] - The roots are: \[ a = \frac{-7 \pm \sqrt{45}}{2} = \frac{-7 \pm 3\sqrt{5}}{2} \] - The quadratic \( a^2 + 7a + 1 < 0 \) is satisfied between the roots: \[ a \in \left( \frac{-7 - 3\sqrt{5}}{2}, \frac{-7 + 3\sqrt{5}}{2} \right) \] 2. **For \( a^2 + 8a + 4 < 0 \)**: - Calculate the discriminant: \[ D = 8^2 - 4 \cdot 1 \cdot 4 = 64 - 16 = 48 \] - The roots are: \[ a = \frac{-8 \pm \sqrt{48}}{2} = \frac{-8 \pm 4\sqrt{3}}{2} = -4 \pm 2\sqrt{3} \] - The quadratic \( a^2 + 8a + 4 < 0 \) is satisfied between the roots: \[ a \in \left( -4 - 2\sqrt{3}, -4 + 2\sqrt{3} \right) \] ### Step 3: Find the intersection of the intervals Now we need to find the intersection of the intervals obtained from the two inequalities: 1. **Interval from \( a^2 + 7a + 1 < 0 \)**: \[ \left( \frac{-7 - 3\sqrt{5}}{2}, \frac{-7 + 3\sqrt{5}}{2} \right) \] 2. **Interval from \( a^2 + 8a + 4 < 0 \)**: \[ \left( -4 - 2\sqrt{3}, -4 + 2\sqrt{3} \right) \] ### Step 4: Determine the integral values of \( a \) We need to find the integral values of \( a \) that lie within the intersection of the two intervals. 1. **Calculate approximate values**: - \( \sqrt{5} \approx 2.236 \) gives \( \frac{-7 - 3\sqrt{5}}{2} \approx -8.354 \) and \( \frac{-7 + 3\sqrt{5}}{2} \approx -5.646 \). - \( \sqrt{3} \approx 1.732 \) gives \( -4 - 2\sqrt{3} \approx -7.464 \) and \( -4 + 2\sqrt{3} \approx -0.536 \). 2. **Intersection**: The intersection of the intervals is: \[ \left( -7.464, -5.646 \right) \] The integral values in this range are \( -7, -6 \). ### Step 5: Calculate the sum of integral values The sum of the integral values \( -7 \) and \( -6 \) is: \[ -7 + (-6) = -13 \] ### Final Answer The sum of all the integral values of \( a \) must be equal to \( -13 \).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • NTA JEE MOCK TEST 44

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 46

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If the inequality (m-2)x^(2) + 8x + m + 4 gt 0 is satisfied for all x in R , then the least integral value of m is:

If the inequality x^(2)+y^(2)+xy+1>=h(x+y) holds for all real x and y, then the sum of all possible integral values of h is

Knowledge Check

  • If the inequality (m-2)x^(2)+8x+m+4gt0 is satisfied for all x epsilon R , then least integral m is

    A
    4
    B
    5
    C
    6
    D
    None of these
  • Sum of the squares of all integral values of a for which the inequality x^(2) + ax + a^(2) + 6a lt 0 is satisfied for all x in ( 1,2) must be equal to

    A
    90
    B
    89
    C
    88
    D
    91
  • Similar Questions

    Explore conceptually related problems

    If the inequality (mx^(2)+3x+4)/(x^(2)+2x+2)<5 is satisfied for all x in R, then find the value of m.

    If the equation cot^(4)x-2cos ec^(2)x+a^(2)=0 has at least one solution,then the sum of all possible integral values of a is equal to a.4b .3c.2d.0

    The set of values of a for which the inequality,x^(2)+ax+a^(2)+6a<0 is satisfied for all x belongs(1,2) lies in the interval:

    If the inequality (x^(2)-kx-2)/(x^(2)-3x+4)>-1 for every x in R and S is the sum of all integral values of k, If the inequalitythen find the value of S^(2)

    If exactly one root of the equation x^(2)-2kx+k^(2)-1=0 satisfies the inequality log_(sqrt(3))(2-x)<=0 then find sum of all possible integral values of k

    If (y^(2)-6y+3)(x^(2)+x+1)lt2x AA x in R, then sum of all integral values of y is