Home
Class 12
MATHS
If n gt2 and alpha, beta, gamma in R, th...

If `n gt2` and `alpha, beta, gamma in R`, then the value of `S=alphaC_(0)-(alpha+beta)C_(1)+(alpha+2beta+2^(2)gamma)C_(2)-(alpha+3beta+3^(2)gamma)C_(3)+…." upto "(n+1)` terms is equal to
(where, `C_(r)` denotes `.^(n)C_(r)`)

A

0

B

`2^(n-2)gamma`

C

`n^(2)2^(n-2)gamma`

D

ngamma`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the sum \[ S = \sum_{k=0}^{n} (-1)^k P_k C_k \] where \( P_k \) is defined as: - \( P_0 = \alpha \) - \( P_1 = -(\alpha + \beta) \) - \( P_2 = \alpha + 2\beta + 2^2\gamma \) - \( P_3 = -(\alpha + 3\beta + 3^2\gamma) \) - and so on, up to \( n+1 \) terms. ### Step 1: Identify the structure of the sum The sum alternates in sign and involves binomial coefficients \( C_k \). We can express the sum \( S \) as: \[ S = \sum_{k=0}^{n} (-1)^k P_k C_k \] ### Step 2: Break down \( P_k \) From the problem, we see that \( P_k \) can be broken down into three parts based on the coefficients of \( \alpha \), \( \beta \), and \( \gamma \): 1. The coefficient of \( \alpha \) contributes \( \alpha C_0 \). 2. The coefficient of \( \beta \) contributes \( -(\alpha + \beta) C_1 + (2\beta + 2^2\gamma) C_2 - (3\beta + 3^2\gamma) C_3 + \ldots \). 3. The coefficient of \( \gamma \) contributes \( (2^2\gamma) C_2 - (3^2\gamma) C_3 + \ldots \). ### Step 3: Use known summation results We can use the known results for sums involving binomial coefficients. Specifically, we know: 1. \(\sum_{k=0}^{n} (-1)^k C_k = 0\) 2. \(\sum_{k=1}^{n} (-1)^k k C_k = 0\) 3. \(\sum_{k=2}^{n} (-1)^k k(k-1) C_k = 0\) ### Step 4: Evaluate the contributions From the above results, we can evaluate the contributions: - The contribution from \( \alpha \) is \( \alpha \cdot 0 = 0 \). - The contribution from \( \beta \) is \( \beta \cdot 0 = 0 \). - The contribution from \( \gamma \) is also \( 0 \). ### Step 5: Identify the remaining term The only term that remains is from \( C_1 \): \[ S = \sum_{k=1}^{n} (-1)^k C_k \] This simplifies to \( n \) because the only non-zero contribution comes from \( C_1 \). ### Final Result Thus, the value of \( S \) is: \[ S = n \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • NTA JEE MOCK TEST 54

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 56

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If alpha,beta,gamma are the roots of x^(3)-2x^(2)+3x-4=0 then the value of alpha^(2)beta^(2)+beta^(2)gamma^(2)+gamma^(2)alpha^(2) is

If alpha, beta, gamma are the roots of x^3+px^2+qx+r=0 then alpha^(2)(beta+gamma)+beta^(2)(gamma+alpha)+gamma^(2)(alpha+beta)=

Knowledge Check

  • If roots of x ^(3)+2x ^(2) +1=0 are alpha, beta and gamma, then the value of (alpha beta )^(3)+ (beta gamma ) ^(3) + (alpha gamma )^(3), is:

    A
    `-11`
    B
    3
    C
    4
    D
    6
  • If alpha, beta, gamma are such that alpha +beta+gamma=2, alpha^(2)+beta^(2)+gamma^(2)=6, alpha^(3)+beta^(3)+gamma^(3) , then alpha^(4)+beta^(4)+gamma^(4) is equal to:

    A
    10
    B
    12
    C
    18
    D
    none of these
  • If alpha, beta and gamma are the roots of the equation x^(3)-px^(2)+qx-r=0 , then the value of alpha^(2)beta+alpha^(2)gamma+beta^(2)alpha+beta^(2)gamma+gamma^(2)alpha+gamma^(2)beta is equal to

    A
    `pq+3r`
    B
    `pq+r`
    C
    `pq-3r`
    D
    `(q^(2))/(r )`
  • Similar Questions

    Explore conceptually related problems

    If alpha, beta, gamma are roots of x^(3)-2x^(2)+7x-1=0 then the value of (alpha+beta-gamma) (beta+gamma-alpha) (alpha+gamma-beta)

    If alpha,beta,gamma are such that alpha+beta+gamma=2alpha^(2)+beta^(2)+gamma^(2)=6,alpha^(3)+beta^(3)+gamma^(3)=8, then alpha^(4)+beta^(4)+gamma^(4)

    If alpha, beta, gamma are the roots of x^(3)-px^(2)+qx-r=0 then (alpha+beta)(beta+gamma)(gamma+alpha) =

    If (alpha, beta, gamma) are roots of equation x^(3)-3x^(2)+1=0 then the value of [((alpha)/(1+alpha))^(3)+((beta)/(1+beta))^(3)+((gamma)/(1+gamma))^(3) is k then |k|=

    If alpha,beta,gamma are the roots of the equation x^(3)+px^(2)+qx+r=0, then the value of (alpha-(1)/(beta gamma))(beta-(1)/(gamma alpha))(gamma-(1)/(alpha beta)) is