Home
Class 12
MATHS
Sigma(r=0)^(n)((r^(2))/(r+1)).^(n)C(r) i...

`Sigma_(r=0)^(n)((r^(2))/(r+1)).^(n)C_(r)` is equal to

A

`(2^(n-1)(n^(2)+n+2)-1)/((n+1))`

B

`(2^(n-1)(n^(2)-n-2)+1)/((n+1))`

C

`(2^(n-1)(n^(2)-n+2)-1)/((n+1))`

D

`(2^(n-1)(n^(2)+n-2)+1)/((n+1))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \sum_{r=0}^{n} \frac{r^2}{r+1} \binom{n}{r} \), we will follow these steps: ### Step 1: Rewrite the Summation We start with the original summation: \[ \sum_{r=0}^{n} \frac{r^2}{r+1} \binom{n}{r} \] We can rewrite \( r^2 \) as \( r^2 = (r-1)(r+1) + (r-1) \). Thus, we can express the summation as: \[ \sum_{r=0}^{n} \frac{(r-1)(r+1) + (r-1)}{r+1} \binom{n}{r} \] This simplifies to: \[ \sum_{r=0}^{n} \left( (r-1) + 1 \right) \binom{n}{r} \] ### Step 2: Split the Summation Now we can split the summation into two parts: \[ \sum_{r=0}^{n} (r-1) \binom{n}{r} + \sum_{r=0}^{n} \binom{n}{r} \] The second summation \( \sum_{r=0}^{n} \binom{n}{r} = 2^n \). ### Step 3: Simplify the First Summation For the first summation, we can use the identity \( r \binom{n}{r} = n \binom{n-1}{r-1} \): \[ \sum_{r=0}^{n} (r-1) \binom{n}{r} = \sum_{r=1}^{n} (r-1) \binom{n}{r} = \sum_{r=1}^{n} (r \binom{n}{r} - \binom{n}{r}) = n \sum_{r=1}^{n} \binom{n-1}{r-1} - \sum_{r=0}^{n} \binom{n}{r} \] The first part simplifies to \( n \cdot 2^{n-1} \) and the second part is \( 2^n \): \[ = n \cdot 2^{n-1} - 2^n \] ### Step 4: Combine the Results Now we combine the results: \[ \sum_{r=0}^{n} \frac{r^2}{r+1} \binom{n}{r} = n \cdot 2^{n-1} - 2^n + 2^n = n \cdot 2^{n-1} \] ### Final Result Thus, the final result is: \[ \sum_{r=0}^{n} \frac{r^2}{r+1} \binom{n}{r} = n \cdot 2^{n-1} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • NTA JEE MOCK TEST 56

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 58

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

The value of Sigma_(r=1)^(n)(-1)^(r+1)(""^(n)C_(r))/(r+1)) is equal to

If a_(n)=sum_(r=0)^(n) (1)/(""^(n)C_(r )) , then sum_(r=0)^(n) (r )/(""^(n)C_(r )) is equal to

Knowledge Check

  • sum_(r=0)^(n)((r+2)/(r+1))*""^(n)C_(r) is equal to :

    A
    `(2^(n)(n+2)-1)/((n+1))`
    B
    `(2^(n)(n+1)-1)/((n+1))`
    C
    `(2^(n)(n+4)-1)/((n+1))`
    D
    `(2^(n)(n+3)-1)/((n+1))`
  • The value of lim_(nrarroo)Sigma_(r=1)^(n)(2^(r)+3^(r))/(6^(r)) is equal to

    A
    0
    B
    1
    C
    6
    D
    `(3)/(2)`
  • Sigma_(r=0)^(n)(n-r)(.^(n)C_(r))^(2) is equal to

    A
    `n^(2)(.^(2n-1)C_(n))`
    B
    `n^(2)(.^(2n)C_(n-1))`
    C
    `n^(2)(.^(2n-1)C_(n-1))`
    D
    `m^(2)(.^(2n-2)C_(n))`
  • Similar Questions

    Explore conceptually related problems

    Value of sum_(r=0)^(2n)r*(""^(2n)C_(r))*(1)/((r+2)) is equal to :

    The value of sum_(r=0)^(2n)(-1)^(r)*(""^(2n)C_(r))^(2) is equal to :

    If n is an even natural number , then sum_(r=0)^(n) (( -1)^(r))/(""^(n)C_(r)) equals

    The value of Sigma_(r=1)^(n) (a+r+ar)(-a)^r is equal to

    Sigma_(r=1)^(n) (-1)^(r+1).(""^(n)C_(r))/(r+1) " is equal to" -