Home
Class 12
MATHS
Consider the matrix A=[(3,1),(-6,-2)], t...

Consider the matrix `A=[(3,1),(-6,-2)]`, then `(I+A)^(40)` is equal to

A

`I+2^(38)A`

B

`I+2^(39)A`

C

`I+(2^(40)+1)A`

D

`I+(2^(40)-1)A`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to calculate \((I + A)^{40}\) where \(A = \begin{pmatrix} 3 & 1 \\ -6 & -2 \end{pmatrix}\) and \(I\) is the identity matrix of the same size. ### Step 1: Calculate \(A^2\) First, we will find \(A^2\) to check if \(A\) has any special properties. \[ A^2 = A \cdot A = \begin{pmatrix} 3 & 1 \\ -6 & -2 \end{pmatrix} \cdot \begin{pmatrix} 3 & 1 \\ -6 & -2 \end{pmatrix} \] Calculating the elements: - First row, first column: \(3 \cdot 3 + 1 \cdot (-6) = 9 - 6 = 3\) - First row, second column: \(3 \cdot 1 + 1 \cdot (-2) = 3 - 2 = 1\) - Second row, first column: \(-6 \cdot 3 + (-2) \cdot (-6) = -18 + 12 = -6\) - Second row, second column: \(-6 \cdot 1 + (-2) \cdot (-2) = -6 + 4 = -2\) Thus, we have: \[ A^2 = \begin{pmatrix} 3 & 1 \\ -6 & -2 \end{pmatrix} = A \] ### Step 2: Determine \(A^n\) Since \(A^2 = A\), we can conclude that for any \(n \geq 1\): \[ A^n = A \] ### Step 3: Calculate \((I + A)^{40}\) Now, we can express \((I + A)^{40}\) using the binomial theorem: \[ (I + A)^{40} = I^{40} + \binom{40}{1} I^{39} A + \binom{40}{2} I^{38} A^2 + \ldots + \binom{40}{40} A^{40} \] Since \(I^n = I\) for any \(n\) and \(A^n = A\): \[ (I + A)^{40} = I + 40A + \binom{40}{2} A + \ldots + A \] ### Step 4: Factor out \(A\) Now we can factor out \(A\): \[ (I + A)^{40} = I + A \left(40 + \binom{40}{2} + \ldots + \binom{40}{40}\right) \] ### Step 5: Sum of Binomial Coefficients The sum of the binomial coefficients from \(k=1\) to \(k=40\) is given by: \[ \sum_{k=0}^{40} \binom{40}{k} = 2^{40} \] Thus, the sum from \(k=1\) to \(k=40\) is: \[ 2^{40} - 1 \] ### Step 6: Final Expression Therefore, we can write: \[ (I + A)^{40} = I + A(2^{40} - 1) \] ### Conclusion The final result is: \[ (I + A)^{40} = I + (2^{40} - 1)A \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • NTA JEE MOCK TEST 58

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 60

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

Consider the matrix A=[{:(2,3),(4,5):}] . Hence , find A^(-1) .

Consider the matrix A=[{:(2,3),(4,5):}] . Show that A^(2)-7A-2I=O

Knowledge Check

  • (1+2i)^6 is equal to

    A
    None of these
    B
    `-177 +44j`
    C
    `177 +44j`
    D
    `177 -44j`
  • Consider the matrix A=[(x, 2y,z),(2y,z,x),(z,x,2y)] and A A^(T)=9I. If Tr(A) gt0 and xyz=(1)/(6) , then the vlaue of x^(3)+8y^(3)+z^(3) is equal to (where, Tr(A), I and A^(T) denote the trace of matrix A i.e. the sum of all the principal diagonal elements, the identity matrix of the same order of matrix A and the transpose of matrix A respectively)

    A
    20
    B
    22
    C
    26
    D
    28
  • If A is square matrix such that A^(2)=A, then (I+A)^(3)-7A is equal to (A)A(B)I-A(C)I(D)3A

    A
    `A`
    B
    `I-A`
    C
    `I`
    D
    `3A`
  • Similar Questions

    Explore conceptually related problems

    If a square matrix such that A^(2)=A, then (I+A)^(3)-7A is equal to A(b)I-A(c)I (d) 3A

    If A is a square matrix such that A^(2)=A, then (I+A)^(3)-7A is equal to (a) A (b) I-A(c)I(d)3A

    Let A be a non - singular symmetric matrix of order 3. If A^(T)=A^(2)-I , then (A-I)^(-1) is equal to

    If for the matrix A, A^(3)=I , then A^(-1)=

    If A is a square matrix such that A^(2)= I , then (A-I)^(3)+(A+I)^(3)-7A is equal to